SHA-3 Hardware Implementations Round Three

From The ECRYPT Hash Function Website
Revision as of 11:36, 23 May 2012 by STillich (talk | contribs) (BLAKE, Grøstl, Skein)

1 Call for Contributions

Implementers (both submitters and non-submitters): You have results that complement this site? Let us know at sha3zoo-hardware@iaik.tugraz.at If you are making your HDL code available, please also provide us with according information.

2 Important Information

This page summarizes key properties of reported hardware implementations of those SHA-3 candidates, which are currently under consideration by NIST. This is work in progress. If you know of any implementations which should be mentioned on this page, refer to our call for contributions.

A list of hardware implementations of the round 1 candidates can be found here. A list of hardware implementations of the round 2 candidates is archived here. Please note that the pages for round 1 and 2 candidates are provided for reference and will not be updated.

The implementations are categorized into FPGA and standard-cell ASIC implementations. Note that the diversity of implementation scope, target technologies, and synthesis tools makes direct comparisons between different hardware implementations difficult. The more of these parameters agree, the more reasonable the comparison becomes.

The target technology should be as similar as possible. For FPGA implementation, it is desirable to compare implementations on the same target device (or at least on devices of the same FPGA family). For standard-cell ASIC implementation, at least the minimal gate length of the process (e.g., 0.13 µm) should agree. More ideally, the implementations use the same standard-cell library (which implies the use of the same process technology).

In order to facilitate the comparison of hardware modules with different implementation scopes, we classify them into three categories:

For suggestions regarding the structure of this site, let us know at sha3zoo-hardware@iaik.tugraz.at

2.1 Fully Autonomous Implementation

HW type self-cont.jpg

Such hardware implementations include the complete functionality of a SHA-3 candidate (or a specific version thereof). That means the input message can be loaded piecewise into the hardware module and it delivers the message digest as output. All hash calculations happen exclusively within the hardware module. If integrated in a system, the achievable throughput of a fully autonomous implementation depends on the speed of the hardware module itself and the speed of the (system dependent) data interface delivering the input message.


2.2 Implementation with External Memory

HW type ext-mem.jpg

These implementations use external memory to hold intermediate values during the hashing of a message. The implemented hardware itself normally consists of the core logic functionality of the hash function, some registers for short-lived temporary values, and possible a memory controller for access to the external memory. Such implementations can load the input message either over a dedicated interface (similar to a fully autonomous implementation) or from the external memory. In order to reach the maximal throughput of the hardware module, the external memory must be sufficiently fast.


2.3 Implementation of Core Functionality

HW type core-funct.jpg

Such implementations comprise only important parts of the hash function (e.g., the compression function), which normally allows to get a first-order estimate of the performance figures of full implementations.

3 Tweaks of Round Three Candidates over Round Two

The main tweaks for round three consist of the adaption of round numbers for some of the candidates. For implementations of round 2 variants (cf. round two results), we extrapolated to the performance of round 3 variants. Extrapolated results are marked in orange . If the tweaks for an algorithm are expected to be negligible for performance (e.g. just a change of constants), we include the results for the round 2 variant verbatim.

  • BLAKE: The round three versions of BLAKE have been renamed to BLAKE-224, BLAKE-256, BLAKE-384, and BLAKE-512. The number of rounds has been increased from 10 to 14 for BLAKE-224 and BLAKE-256, and from 14 to 16 for BLAKE-384 and BLAKE-512. Thus, throughput for BLAKE-224 and BLAKE-256 is expected to decrease by a factor of 10/14 (reduction by about 28.5%), and for BLAKE-384 and BLAKE-512 by a factor of 14/16 (reduction by 12.5%).
  • Grøstl: The shift distances for the Q permutation have been changed and the round constants for both P and Q permutation have been modified. The first is not expected to have an impact on hardware performance, whereas the latter is likely to increase overall hardware size and/or decrease throughput slightly.
  • JH: The number of rounds has been increased from 35.5 to 42. Thus, throughput of JH is expected to decrease by a factor of 35.5/42 (reduction by about 15.5%).
  • Keccak: The padding rule has been simplified and some parameters have been redefined. No significant impact on hardware performance is expected.
  • Skein: A single 64-bit constant has been changed. No significant impact on hardware performance is expected.

4 Ongoing Hardware Benchmarking Efforts

To describe it in the words of the initiators and maintainers: "ATHENa: Automated Tool for Hardware EvaluatioN is a project started at George Mason University, aimed at fair, comprehensive, and automated evaluation of cryptographic cores developed using hardware description languages, such as VHDL and Verilog." More information about the project and the current results can be found on the ATHENa webpage. Note: As each hash module submitted to ATHENAa is implemented on several FPGA platforms, the SHA-3 zoo pages will not replicate all results produced by the ATHENa project on this webpage. Instead please refer directly to the ATHENa webpage.

5 Summary of All Results

This section includes four categories of implementations (high-speed, low-area, both for FPGA and ASIC) which include known published results. If the HDL sourcecode is available, a link is provided as well.

5.1 High-Speed Implementations (FPGA)

Important note: The size and functionality of slices varies between FPGA families. A direct comparison of the slice count of implementations on different FPGA families is therefore problematic.

Hash Function Name Reference / HDL Impl. Scope Impl. Details Technology Size Throughput Clock Frequency
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex-II Pro 3091 slices 1231 Mbit/s 37.0 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex 4 3087 slices 1596 Mbit/s 48.0 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex 5 1694 slices 2216 Mbit/s 67.0 MHz
BLAKE-256 Namin and Hasan [2] / N/A Core functionality Compression function with 8 G function units and I/O registers Altera Stratix III 5435 ALUTs 1562 Mbit/s 46.97 MHz
BLAKE-256 Kobayashi et al. [3] / RCIS webpage Fully autonomous Xilinx Virtex 5 1660 slices 1911 Mbit/s 115 MHz
BLAKE-256 Homsirikamol et al. [30] / On request Fully autonomous 4 G function units per iteration Xilinx Virtex 5 1523 slices 2245 Mbit/s 128.9 MHz
BLAKE-256 Homsirikamol et al. [30] / On request Fully autonomous 4 G function units per iteration Altera Stratix III 3635 ALUTs 2072 Mbit/s 119.0 MHz
BLAKE-256 Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1118 slices 835 Mbit/s 118.06 MHz
BLAKE-256 Matsuo et al. [33] / RCIS website Fully autonomous Xilinx Virtex 5 1660 slices 1911 Mbit/s 115 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex-II Pro 11122 slices 1030 Mbit/s 17.0 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex 4 11483 slices 1494 Mbit/s 25.0 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units Xilinx Virtex 5 4329 slices 2090 Mbit/s 35.0 MHz
BLAKE-512 Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1718 slices 1137 Mbit/s 90.91 MHz
BLAKE-512 Homsirikamol et al. [30] / On request Fully autonomous 4 G function units per iteration Xilinx Virtex 5 3064 slices 3080 Mbit/s 99.7 MHz
BLAKE-512 Homsirikamol et al. [30] / On request Fully autonomous 4 G function units per iteration Altera Stratix III 7086 ALUTs 2766 Mbit/s 89.5 MHz
Grøstl-224/256 Jungk et al. [6] / N/A Fully autonomous P & Q permutation in parallel Xilinx Spartan 3 6136 slices 4520 Mbit/s 88.3 MHz
Grøstl-224/256 Submission doc. [7] / N/A Fully autonomous P & Q permutation in parallel Xilinx Virtex 5 1722 slices 10276 Mbit/s 200.7 MHz
Grøstl-224/256 Baldwin et al. [4] / N/A Core functionality P & Q permutation in parallel, S-box in BRAM Xilinx Spartan 3 4827 slices 3660 Mbit/s 71.53 MHz
Grøstl-224/256 Baldwin et al. [4] / N/A Core functionality P & Q permutation in parallel, S-box in BRAM Xilinx Virtex 5 4516 slices 7310 Mbit/s 142.87 MHz
Grøstl-256 Kobayashi et al. [3] / RCIS webpage Fully autonomous Xilinx Virtex 5 4057 slices 5171 Mbit/s 101 MHz
Grøstl-256 Homsirikamol et al. [30] / On request Fully autonomous P & Q permutations interleaved Xilinx Virtex 5 1597 slices 7885 Mbit/s 323.4 MHz
Grøstl-256 Homsirikamol et al. [30] / On request Fully autonomous P & Q permutations interleaved Altera Stratix III 6350 ALUTs 5380 Mbit/s 220.7 MHz
Grøstl-256 Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 2391 slices 3242 Mbit/s 101.32 MHz
Grøstl-256 Matsuo et al. [33] / RCIS website Fully autonomous Xilinx Virtex 5 2616 slices 7885 Mbit/s 154 MHz
Grøstl-384/512 Submission doc. [7] / N/A Fully autonomous P & Q permutation in parallel Xilinx Spartan 3 20233 slices 5901 Mbit/s 80.7 MHz
Grøstl-384/512 Baldwin et al. [4] / N/A Core functionality P & Q permutation parallel, S-box in LUTs Xilinx Spartan 3 17452 slices 3180 Mbit/s 79.61 MHz
Grøstl-384/512 Baldwin et al. [4] / N/A Core functionality P & Q permutation parallel, S-box in LUTs Xilinx Virtex 5 19161 slices 6090 Mbit/s 83.33 MHz
Grøstl-384/512 Submission doc. [7] / N/A Fully autonomous P & Q permutation in parallel Xilinx Virtex 5 5419 slices 15395 Mbit/s 210.5 MHz
Grøstl-384/512 Jungk and Reith [22] / N/A Fully autonomous Shared P & Q permutation Xilinx Spartan 3 8308 slices 3474 Mbit/s 95 MHz
Grøstl-512 Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 4845 slices 3619 Mbit/s 123.4 MHz
Grøstl-512 Homsirikamol et al. [30] / On request Fully autonomous P & Q permutations interleaved Xilinx Virtex 5 3138 slices 10314 Mbit/s 292.1 MHz
Grøstl-512 Homsirikamol et al. [30] / On request Fully autonomous P & Q permutations interleaved Altera Stratix III 12355 ALUTs 7142 Mbit/s 202.3 MHz
JH-256 Homsirikamol et al. [30] / On request Fully autonomous Xilinx Virtex 5 1018 slices 4578 Mbit/s 380.8 MHz
JH-256 Homsirikamol et al. [30] / On request Fully autonomous Altera Stratix III 3525 ALUTs 4661 Mbit/s 387.8 MHz
JH-256 Matsuo et al. [33] / RCIS website Fully autonomous Xilinx Virtex 5 2661 slices 2231 Mbit/s 201 MHz
JH Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1291 slices 1641 Mbit/s 250.13 MHz
JH-512 Homsirikamol et al. [30] / On request Fully autonomous Xilinx Virtex 5 1104 slices 4742 Mbit/s 394.5 MHz
JH-512 Homsirikamol et al. [30] / On request Fully autonomous Altera Stratix III 3709 ALUTs 4696 Mbit/s 390.6 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Fully autonomous Core (round function, state register) & IO buffer Altera Cyclone III 5776 LEs 7500 Mbit/s 133 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Fully autonomous Core (round function, state register) & IO buffer Altera Stratix III 4713 ALUTs 12400 Mbit/s 218 MHz
Keccak J. Strömbergson [9] / Submission webpage Fully autonomous Core (round function, state register) only Xilinx Spartan 3A 3393 slices 4800 Mbit/s 85 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Fully autonomous Core (round function, state register) & IO buffer Xilinx Virtex 5 1412 slices 6900 Mbit/s 122 MHz
Keccak(-224) Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1117 slices 5915 Mbit/s 189 MHz
Keccak(-256) Homsirikamol et al. [30] / On request Fully autonomous Xilinx Virtex 5 1272 slices 12817 Mbit/s 282.7 MHz
Keccak(-256) Homsirikamol et al. [30] / On request Fully autonomous Altera Stratix III 4213 ALUTs 12393 Mbit/s 273.4 MHz
Keccak(-256) Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1117 slices 6263 Mbit/s 189 MHz
Keccak(-256) Matsuo et al. [33] / RCIS website Fully autonomous Xilinx Virtex 5 1433 slices 8397 Mbit/s 205 MHz
Keccak(-384) Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1117 slices 8190 Mbit/s 189 MHz
Keccak(-512) Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1117 slices 8518 Mbit/s 189 MHz
Keccak(-512) Homsirikamol et al. [30] / On request Fully autonomous Xilinx Virtex 5 1257 slices 6845 Mbit/s 285.2 MHz
Keccak(-512) Homsirikamol et al. [30] / On request Fully autonomous Altera Stratix III 3979 ALUTs 7310 Mbit/s 304.6 MHz
Keccak Akin et al. [34] / N/A Core functionality One Keccak-f round per cycle Xilinx Spartan 3 2024 slices 3460 Mbit/s 81.4 MHz
Keccak Akin et al. [34] / N/A Core functionality One Keccak-f round per cycle Xilinx Virtex-II 2024 slices 5810 Mbit/s 136.6 MHz
Keccak Akin et al. [34] / N/A Core functionality One Keccak-f round per cycle Xilinx Virtex 4 2024 slices 6070 Mbit/s 142.9 MHz
Skein-256-h Men Long [11] / N/A Core functionality UBI component Xilinx Virtex 5 1001 slices 408.7 Mbit/s 114.9 MHz
Skein-256-256 Stefan Tillich [12] / On request Fully autonomous 8 Threefish rounds unrolled Xilinx Virtex 5 937 slices 1751 Mbit/s 68.4 MHz
Skein-256-256 Stefan Tillich [12] / On request Fully autonomous 8 Threefish rounds unrolled Xilinx Spartan 3 2421 slices 669 Mbit/s 26.14 MHz
Skein-256-256 Kobayashi et al. [3] / RCIS webpage Fully autonomous Xilinx Virtex 5 854 slices 1482 Mbit/s 115 MHz
Skein-512-256 Homsirikamol et al. [30] / On request Fully autonomous 4 Threefish rounds unrolled Xilinx Virtex 5 1621 slices 3178 Mbit/s 118.0 MHz
Skein-512-256 Homsirikamol et al. [30] / On request Fully autonomous 4 Threefish rounds unrolled Altera Stratix III 4645 ALUTs 2503 Mbit/s 92.9 MHz
Skein-256-256 Matsuo et al. [33] / RCIS website Fully autonomous Xilinx Virtex 5 854 slices 1402 Mbit/s 115 MHz
Skein-512-h Men Long [11] / N/A Core functionality UBI component Xilinx Virtex 5 1877 slices 817.4 Mbit/s 114.9 MHz
Skein-512-512 Stefan Tillich [12] / On request Fully autonomous 8 Threefish rounds unrolled Xilinx Virtex 5 1632 slices 3535 Mbit/s 69.04 MHz
Skein-512-512 Stefan Tillich [12] / On request Fully autonomous 8 Threefish rounds unrolled Xilinx Spartan 3 4273 slices 1365 Mbit/s 26.66 MHz
Skein-512 Baldwin et al. [31] / UCC webpage Fully autonomous Xilinx Virtex 5 1786 slices 1945 Mbit/s 83.65 MHz
Skein-512-512 Homsirikamol et al. [30] / On request Fully autonomous 4 Threefish rounds unrolled Xilinx Virtex 5 1716 slices 3209 Mbit/s 119.1 MHz
Skein-512-512 Homsirikamol et al. [30] / On request Fully autonomous 4 Threefish rounds unrolled Altera Stratix III 4794 ALUTs 2434 Mbit/s 90.3 MHz



5.2 Low-Area Implementations (FPGA)

Hash Function Name Reference / HDL Impl. Scope Implementation Details Technology Size Throughput Clock Frequency
BLAKE-256 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Spartan-3 124 slices 82 Mbit/s 190.0 MHz
BLAKE-256 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Virtex-4 124 slices 154 Mbit/s 357.0 MHz
BLAKE-256 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Virtex-5 56 slices 161 Mbit/s 372.0 MHz
BLAKE-256 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Altera Cyclone III 285 LEs 83 Mbit/s 192.0 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex-II Pro 958 slices 265 Mbit/s 59.0 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex 4 960 slices 307 Mbit/s 68.0 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex 5 390 slices 411 Mbit/s 91.0 MHz
BLAKE-512 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Spartan-3 229 slices 121 Mbit/s 158.0 MHz
BLAKE-512 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Virtex-4 230 slices 192 Mbit/s 250.0 MHz
BLAKE-512 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Xilinx Virtex-5 108 slices 275 Mbit/s 358.0 MHz
BLAKE-512 Beuchat et al. [13] / N/A Fully autonomous Rescheduled G function Altera Cyclone III 542 LEs 108 Mbit/s 140.0 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex-II Pro 1802 slices 285 Mbit/s 36.0 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex 4 1856 slices 333 Mbit/s 42.0 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 1 G function unit Xilinx Virtex 5 939 slices 466 Mbit/s 59.0 MHz
Grøstl-224/256 Jungk et al. [6] / N/A Fully autonomous 64-bit datapath, P & Q permutation in parallel Xilinx Spartan 3 2486 slices 404 Mbit/s 63.2 MHz
Grøstl-224/256 Jungk et al. [6] / N/A Fully autonomous 64-bit datapath, P & Q permutation in parallel Xilinx Virtex 2 Pro 2754 slices 512 Mbit/s 81.5 MHz
Grøstl-224/256 Jungk and Reith [22] / N/A Fully autonomous Shared P & Q permutation, S-Box based on composite field arithmetic Xilinx Spartan 3 1276 slices 192 Mbit/s 60 MHz
Grøstl-384/512 Jungk and Reith [22] / N/A Fully autonomous Shared P & Q permutation, S-Box based on composite field arithmetic Xilinx Spartan 3 2110 slices 144 Mbit/s 63 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Using external memory Small core using system memory Altera Stratix III 855 ALUTs 96.8 Mbit/s 366 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Using external memory Small core using system memory Altera Cyclone III 1559 LEs 47.8 Mbit/s 181 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Using external memory Small core using system memory Xilinx Virtex 5 444 slices 70.1 Mbit/s 265 MHz
Skein-256-256 Namin and Hasan [2] / N/A Core functionality One round of Threefish iterated Altera Stratix III 1385 ALUTs 573.9 Mbit/s 161.42 MHz



5.3 High-Speed Implementations (ASIC)


Hash Function Name Reference / HDL Impl. Scope Implementation Details Technology Size Throughput Clock Frequency
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units UMC 0.18 µm 58.30 kGates 3782 Mbit/s 114 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with 4 G function units UMC 0.18 µm 41.31 kGates 2966 Mbit/s 170 MHz
BLAKE-256 Namin and Hasan [2] / N/A Core functionality Compression function with 8 G function units and I/O registers STM 90 nm 53 kGates 3196 Mbit/s(*) 96.15 MHz
BLAKE-256 Tillich et al. [14] / On request Fully autonomous Compression function with 4 G function units with CSAs UMC 0.18 µm 45.64 kGates 2836 Mbit/s 170.64 MHz
BLAKE-256 Henzen et al. [29] / ETH webpage Fully autonomous Four parallel G functions modules UMC 90 nm 47.5 kGates 6966 Mbit/s 400 MHz
BLAKE-256 Guo et al. [35] / VT webpage Fully autonomous UMC 0.13 µm 43.52 kGates 3318 Mbit/s 200 MHz
BLAKE-256 RCIS webpage [37] / RCIS webpage Fully autonomous STM 90 nm 37 kGates 4763 Mbit/s 286.5 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 0.18 µm 79 kGates 4548 Mbit/s 137 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 0.18 µm 48 kGates 4176 Mbit/s 240 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 0.13 µm 67 kGates 6689 Mbit/s 201 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 0.13 µm 43 kGates 5748 Mbit/s 330 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 90 nm 65 kGates 12499 Mbit/s 376 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 90 nm 38 kGates 10816 Mbit/s 621 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 8 G function units UMC 0.18 µm 132.47 kGates 5171 Mbit/s 87 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with 4 G function units UMC 0.18 µm 82.73 kGates 4209 Mbit/s 136 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 0.18 µm 147 kGates 6314 Mbit/s 106 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 0.18 µm 98 kGates 6293 Mbit/s 204 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 0.13 µm 139 kGates 9452 Mbit/s 158 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 0.13 µm 92 kGates 8982 Mbit/s 291 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 8 G function units UMC 90 nm 128 kGates 17777 Mbit/s 298 MHz
BLAKE-512 Henzen et al. [40] / Submission webpage Fully autonomous Compression function with 4 G function units UMC 90 nm 79 kGates 16434 Mbit/s 532 MHz
Grøstl-256 Tillich et al. [14] / On request Fully autonomous One shared permutation for P & Q, one pipeline stage UMC 0.18 µm 58.40 kGates 6290 Mbit/s 270.27 MHz
Grøstl-256 Henzen et al. [29] / ETH webpage Fully autonomous P and Q permutation interleaved with one pipeline stage, S-box as LUT UMC 90 nm 135 kGates 16254 Mbit/s 667 MHz
Grøstl-256 Guo et al. [35] / VT webpage Fully autonomous UMC 0.13 µm 110.11 kGates 9606 Mbit/s 188 MHz
Grøstl-256 RCIS webpage [37] / RCIS webpage Fully autonomous STM 90 nm 139.1 kGates 17297 Mbit/s 337.8 MHz
Grøstl-256 RCIS webpage [39] / RCIS webpage Fully autonomous STM 90 nm 120.8 kGates 16275 Mbit/s 349.7 MHz
Grøstl-384/512 Submission doc. [7] / N/A Fully autonomous P & Q permutation in parallel UMC 0.18 µm 341 kGates 6225 Mbit/s 85.1 MHz
JH-256 Tillich et al. [14] / On request Fully autonomous 320 S-boxes, one round of R8 per cycle UMC 0.18 µm 58.83 kGates 4219 Mbit/s 380.22 MHz
JH-256 Henzen et al. [29] / ETH webpage Fully autonomous S-boxes as LUTs, stored constants UMC 90 nm 80 kGates 9134 Mbit/s 760 MHz
JH-256 Guo et al. [35] / VT webpage Fully autonomous UMC 0.13 µm 62.42 kGates 4334 Mbit/s 391 MHz
JH-256 RCIS webpage [37] / RCIS webpage Fully autonomous STM 90 nm 54.6 kGates 8471 Mbit/s 763.4 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Fully autonomous Core (round function, state register) & IO buffer ST 0.13 µm 48 kGates 29900 Mbit/s 526 MHz
Keccak Submission doc. [8] / Submission webpage Fully autonomous Core (round function, state register) only ST 0.13 µm 40 kGates 15000 Mbit/s 500 MHz
Keccak(-256) Tillich et al. [14] / On request Fully autonomous One instance of Keccak-f round UMC 0.18 µm 56.32 kGates 21229 Mbit/s 487.80 MHz
Keccak(-256) Henzen et al. [29] / ETH webpage Fully autonomous One round per cycle UMC 90 nm 50 kGates 43011 Mbit/s 949 MHz
Keccak(-256) Guo et al. [35] / VT webpage Fully autonomous UMC 0.13 µm 47.43 kGates 15457 Mbit/s 377 MHz
Keccak Akin et al. [34] / N/A Core functionality One Keccak-f round per cycle Synopsys 90 nm 10.5 kGates 19320 Mbit/s 454.5 MHz
Keccak(-256) RCIS webpage [37] / RCIS webpage Fully autonomous STM 90 nm 50.7 kGates 33333 Mbit/s 781.3 MHz
Keccak(-256) RCIS webpage [39] / RCIS webpage Fully autonomous STM 90 nm 55.9 kGates 43986 Mbit/s 1030.9 MHz
Skein-256-256 Stefan Tillich [12] / On request Fully autonomous 8 Threefish rounds unrolled UMC 0.18 µm 53.87 kGates 1762 Mbit/s 68.8 MHz
Skein-256-256 Namin and Hasan [2] / N/A Core functionality All 72 Threefish rounds unrolled STM 90 nm 369 kGates 3126 Mbit/s(*) 12.21 MHz
Skein-256-256 Tillich et al. [14] / On request Fully autonomous 8 Threefish rounds unrolled UMC 0.18 µm 58.61 kGates 1882 Mbit/s 73.52 MHz
Skein-256-256 Henzen et al. [29] / ETH webpage Fully autonomous Four unrolled Threefish rounds UMC 90 nm 50 kGates 3558 Mbit/s 264 MHz
Skein-256-256 Guo et al. [35] / VT webpage Fully autonomous UMC 0.13 µm 40.9 kGates 1941 Mbit/s 159 MHz
Skein-256-256 RCIS webpage [37] / RCIS webpage Fully autonomous STM 90 nm 43.1 kGates 3295 Mbit/s 270.3 MHz
Skein-512-512 Tillich et al. [14] / On request Fully autonomous 8 Threefish rounds unrolled UMC 0.18 µm 102.04 kGates 2502 Mbit/s 48.87 MHz
Skein-512 Walker et al. [36] / N/A] Fully autonomous 8 Threefish rounds unrolled Intel 32 nm 57.93 kGates 32320 Mbit/s 631.31 MHz

(*) Estimated peak throughput for the minimal delay of compression function: 1000 * (Input Size in bits) / [(Compression Function Delay in ns) * (Number of Cycles)] = Throughput in Mbit/s.



5.4 Low-Area Implementations (ASIC)

Hash Function Name Reference / HDL Impl. Scope Implementation Details Technology Size Throughput Clock Frequency
BLAKE-256 Tillich et al. [18] / N/A Fully autonomous One G function in 11 cycles AMS 0.35 µm 25.57 kGates 11 Mbit/s 31.25 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with a single G function unit UMC 0.18 µm 10.54 kGates 180.7 Mbit/s 40 MHz
BLAKE-256 Submission doc. [1] / Submission webpage Core functionality Compression function with a half G function unit UMC 0.18 µm 9.89 kGates 90.7 Mbit/s 40 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Fully autonomous 1 adder and 4-word latch array UMC 0.18 µm 13.56 kGates 96.4 Mbit/s 215 MHz
BLAKE-256 Henzen et al. [40] / Submission webpage Using external memory 1 adder and 4-word latch array UMC 0.18 µm 8.60 kGates 44.3 Mbit/s 100 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with a single G function unit UMC 0.18 µm 20.61 kGates 158.4 Mbit/s 20 MHz
BLAKE-512 Submission doc. [1] / Submission webpage Core functionality Compression function with a half G function unit UMC 0.18 µm 19.46 kGates 79.6 Mbit/s 20 MHz
Grøstl-224/256 Tillich et al. [18] / N/A Fully autonomous 64-bit datapath, P & Q permutation shared AMS 0.35 µm 14.62 kGates 145.9 Mbit/s 55.87 MHz
Grøstl-224/256 Grøstl website [19] / N/A Fully autonomous 64-bit datapath, P & Q permutation shared UMC 0.18 µm 17 kGates 645 Mbit/s 246.9 MHz
Grøstl-256 RCIS webpage [39] / RCIS webpage Fully autonomous STM 90 nm 34.8 kGates 2478 Mbit/s 101.6 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Using external memory Small core using system memory ST 0.13 µm 6.5 kGates 176.4 Mbit/s(*) 666.7 MHz
Keccak Updated spec. (v1.2) [8] / Submission webpage Using external memory Small core using system memory, clock freq. limited to 200 MHz ST 0.13 µm 5 kGates 52.9 Mbit/s(**) 200 MHz
Skein-256-256 Tillich et al. [18] / N/A Fully autonomous 64-bit datapath AMS 0.35 µm 12.89 kGates 19.8 Mbit/s 80 MHz
Skein-256-256 Namin and Hasan [2] / N/A Core functionality One round of Threefish iterated STM 90 nm 21 kGates 1018.8 Mbit/s(***) 286.53 MHz

(*) Estimation for 64-bit memory interface: (1024 bits/permutation) * (666.7 * 10^6 cycles/s) / (3870 cycles/permutation) = 176.41 * 10^6 bits/s
(**) Estimation for 64-bit memory interface: (1024 bits/permutation) * (200 * 10^6 cycles/s) / (3870 cycles/permutation) = 52.92 * 10^6 bits/s
(***) Estimated peak throughput for the minimal delay of compression function: 1000 * (Input Size in bits) / [(Compression Function Delay in ns) * (Number of Cycles)] = Throughput in Mbit/s



6 Comparative Studies

This section summarizes the reported results of publications which examined more than one round-three candidate in a similar setup.

6.1 BLAKE, Skein

Reference HDL Category Impl. Scope Technology
Namin and Hasan [2] N/A High-speed FPGA Core functionality Altera Stratix III


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-256 Compression function with 8 G function units and I/O registers 5435 ALUTs 1562 Mbit/s 46.97 MHz
Skein-256-256 All 72 Threefish rounds unrolled (device too small) N/A N/A N/A




Reference HDL Category Impl. Scope Technology
Namin and Hasan [2] N/A High-speed ASIC Core functionality STM 90 nm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-256 Compression function with 8 G function units and I/O registers 53 kGates 3196 Mbit/s(*) 96.15 MHz
Skein-256-256 All 72 Threefish rounds unrolled 369 kGates 3126 Mbit/s(*) 12.21 MHz

(*) Estimated peak throughput for the minimal delay of compression function: 1000 * (Input Size in bits) / [(Compression Function Delay in ns) * (Number of Cycles)] = Throughput in Mbit/s.



6.2 BLAKE, Grøstl, Skein

Reference HDL Category Impl. Scope Technology
Kobayashi et al. [3] RCIS webpage High-speed FPGA Fully autonomous Xilinx Virtex 5


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-256 1660 slices 1911 Mbit/s 115 MHz
Grøstl-256 4057 slices 5171 Mbit/s 101 MHz
Skein-256 854 slices 1482 Mbit/s 115 MHz



6.3 All 5 Round-Three Candidates

Reported results are post-synthesis. An interactive graphical comparison of various area-performance tradeoffs of this study can be found here.


Reference HDL Category Impl. Scope Technology
Tillich et al. [14] On request High-speed ASIC Fully autonomous UMC 0.18 µm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-256 Compression function with 4 G function units with CSAs 45.64 kGates 2836 Mbit/s 170.64 MHz
Grøstl-256 One shared permutation for P & Q, one pipeline stage 58.40 kGates 6290 Mbit/s 270.27 MHz
JH-256 320 S-boxes, one round of R8 per cycle 58.83 kGates 4219 Mbit/s 380.22 MHz
Keccak(-256) One instance of Keccak-f round 56.32 kGates 21229 Mbit/s 487.80 MHz
Skein-256-256 8 Threefish rounds unrolled 58.61 kGates 1882 Mbit/s 73.52 MHz
Skein-512-512 8 Threefish rounds unrolled 102.04 kGates 2502 Mbit/s 48.87 MHz



6.4 BLAKE, Grøstl, Skein

Reference HDL Category Impl. Scope Technology
Tillich et al. [18] N/A Low-area ASIC Fully autonomous AMS 0.35 µm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-256 One G function in 11 cycles 25.57 kGates 11 Mbit/s 31.25 MHz
Grøstl-224/256 64-bit datapath, P & Q permutation shared 14.62 kGates 145.9 Mbit/s 55.87 MHz
Skein-256-256 64-bit datapath 12.89 kGates 19.8 Mbit/s 80 MHz



6.5 All 5 Round-Three Candidates

Reported results of this study are post-P&R performances of designs targeting high throughput.


Reference HDL Category Impl. Scope Technology
Henzen et al. [29] ETH webpage High-speed ASIC Fully autonomous UMC 90 nm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 Four parallel G functions modules 47.5 kGates 9752 Mbit/s 400 MHz
Grøstl-256 P and Q permutation interleaved with one pipeline stage, S-box as LUT 135 kGates 16254 Mbit/s 667 MHz
JH-256 S-boxes as LUTs, stored constants 80 kGates 10807 Mbit/s 760 MHz
Keccak(-256) One round per cycle 50 kGates 43011 Mbit/s 949 MHz
Skein-256-256 Four unrolled Threefish rounds 50 kGates 3558 Mbit/s 264 MHz




6.6 All 5 Round-Three Candidates

Designs optimized towards throughput to area ratio. The cited results are those for the Xilinx Virtex 5 and Altera Stratix III platforms (both for the 256-bit and the 512-bit version of the candidates). Results marked with N/A did not fit into the largest device of the device family. For a full listing of all ATHENa results refer to the ATHENa webpage.


Reference HDL Category Impl. Scope Technology
Homsirikamol et al. [30] On request High-speed FPGA Fully autonomous Xilinx Virtex 5


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 4 G function units per iteration 1523 slices 3143 Mbit/s 128.9 MHz
BLAKE-64 4 G function units per iteration 3064 slices 3520 Mbit/s 99.7 MHz
Grøstl-256 P & Q permutations interleaved 1597 slices 7885 Mbit/s 323.4 MHz
Grøstl-512 P & Q permutations interleaved 3138 slices 10314 Mbit/s 292.1 MHz
JH-256 1018 slices 5416 Mbit/s 380.8 MHz
JH-512 1104 slices 5610 Mbit/s 394.5 MHz
Keccak(-256) 1272 slices 12817 Mbit/s 282.7 MHz
Keccak(-512) 1257 slices 6845 Mbit/s 285.2 MHz
Skein-512-256 4 Threefish rounds unrolled 1621 slices 3178 Mbit/s 118.0 MHz
Skein-512-512 4 Threefish rounds unrolled 1716 slices 3209 Mbit/s 119.1 MHz




Reference HDL Category Impl. Scope Technology
Homsirikamol et al. [30] N/A High-speed FPGA Fully autonomous Altera Stratix III


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 4 G function units per iteration 3635 ALUTs 2901 Mbit/s 119.0 MHz
BLAKE-64 4 G function units per iteration 7086 ALUTs 3161 Mbit/s 89.5 MHz
Grøstl-256 P & Q permutations interleaved 6350 ALUTs 5380 Mbit/s 220.7 MHz
Grøstl-512 P & Q permutations interleaved 12355 ALUTs 7142 Mbit/s 202.3 MHz
JH-256 3525 ALUTs 5515 Mbit/s 387.8 MHz
JH-512 3709 ALUTs 5556 Mbit/s 390.6 MHz
Keccak(-256) 4213 ALUTs 12393 Mbit/s 273.4 MHz
Keccak(-512) 3979 ALUTs 7310 Mbit/s 304.6 MHz
Skein-512-256 4 Threefish rounds unrolled 4645 ALUTs 2503 Mbit/s 92.9 MHz
Skein-512-512 4 Threefish rounds unrolled 4794 ALUTs 2434 Mbit/s 90.3 MHz




6.7 All 5 Round-Three Candidates

Results are without wrapper for long messages.


Reference HDL Category Impl. Scope Technology
Baldwin et al. [31] UCC webpage High-speed FPGA Fully autonomous Xilinx Virtex 5


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 1118 slices 1169 Mbit/s 118.06 MHz
BLAKE-64 1718 slices 1299 Mbit/s 90.91 MHz
Grøstl-256 2391 slices 3242 Mbit/s 101.32 MHz
Grøstl-512 4845 slices 3619 Mbit/s 123.4 MHz
JH 1291 slices 1941 Mbit/s 250.13 MHz
Keccak(-224) 1117 slices 5915 Mbit/s 189 MHz
Keccak(-256) 1117 slices 6263 Mbit/s 189 MHz
Keccak(-384) 1117 slices 8190 Mbit/s 189 MHz
Keccak(-512) 1117 slices 8518 Mbit/s 189 MHz
Skein-512 1786 slices 1945 Mbit/s 83.65 MHz




6.8 All 5 Round-Three Candidates

Results include throughputs without interface overhead.


Reference HDL Category Impl. Scope Technology
Matsuo et al. [33] RCIS webpage High-speed FPGA Fully autonomous Xilinx Virtex 5


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 1660 slices 2676 Mbit/s 115 MHz
Grøstl-256 2616 slices 7885 Mbit/s 154 MHz
JH-256 2661 slices 2639 Mbit/s 201 MHz
Keccak(-256) 1433 slices 8397 Mbit/s 205 MHz
Skein-256-256 854 slices 1402 Mbit/s 115 MHz




Same implementations as in Matsuo et al. [33] implemented on STM 90 nm technology.


Reference HDL Category Impl. Scope Technology
RCIS webpage [37] RCIS webpage High-speed ASIC Fully autonomous STM 90 nm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 37 kGates 6668 Mbit/s 286.5 MHz
Grøstl-256 139.1 kGates 17297 Mbit/s 337.8 MHz
JH-256 54.6 kGates 10022 Mbit/s 763.4 MHz
Keccak(-256) 50.7 kGates 33333 Mbit/s 781.3 MHz
Skein-256-256 43.1 kGates 3295 Mbit/s 270.3 MHz




6.9 All 5 Round-Three Candidates

Results are post-P&R and include throughputs without interface overhead.


Reference HDL Category Impl. Scope Technology
Guo et al. [35] VT webpage High-speed ASIC Fully autonomous UMC 0.13 µm


Hash Function Name Impl. Details Size Throughput Clock Frequency
BLAKE-32 43.52 kGates 4645 Mbit/s 200 MHz
Grøstl-256 110.11 kGates 9606 Mbit/s 188 MHz
JH-256 62.42 kGates 5128 Mbit/s 391 MHz
Keccak(-256) 47.43 kGates 15457 Mbit/s 377 MHz
Skein-256-256 40.9 kGates 1941 Mbit/s 159 MHz




7 References

[1] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3 proposal BLAKE (version 1.3). Available online at http://131002.net/blake/blake.pdf.

[2] A. H. Namin and M. A. Hasan. Hardware Implementation of the Compression Function for Selected SHA-3 Candidates. Available online at http://www.vlsi.uwaterloo.ca/~ahasan/hasan_report.html.

[3] Kazuyuki Kobayashi, Jun Ikegami, Shin'ichiro Matsuo, Kazuo Sakiyama, and Kazuo Ohta. Evaluation of Hardware Performance for the SHA-3 Candidates Using SASEBO-GII. IACR Eprint report 2010/010. Available online at http://eprint.iacr.org/2010/010.pdf.

[4] Brian Baldwin, Andrew Byrne, Mark Hamilton, Neil Hanley, Robert P. McEvoy, Weibo Pan, and William P. Marnane. FPGA Implementations of SHA-3 Candidates: CubeHash, Grøstl, LANE, Shabal and Spectral Hash. IACR Eprint report 2009/342. Available online at http://eprint.iacr.org/2009/342.pdf.

[5] Liang Lu, Maire O'Neil, and Earl Swartzlander. Hardware Evaluation of SHA-3 Hash Function Candidate ECHO. Presentation at the Clauce Shannon Institute Workshop on Coding and Cryptography 2009. Slides available online at http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptography2009/DocumentFile,75649,en.pdf.

[6] Bernhard Jungk, Steffen Reith, and Jürgen Apfelbeck. On Optimized FPGA Implementations of the SHA-3 Candidate Grøstl. IACR Eprint report 2009/206. Available online at http://eprint.iacr.org/2009/206.pdf.

[7] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusievicz, Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate (October 31, 2008). Available online at http://www.groestl.info/Groestl.pdf.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. KECCAK sponge function family main document (Version 1.2, April 23, 2009). Available online at http://keccak.noekeon.org/Keccak-main-1.2.pdf.

[9] Joachim Strömbergson. Implementation of the Keccak Hash Function in FPGA Devices. Available online at http://www.strombergson.com/files/Keccak_in_FPGAs.pdf.

[10] Romain Feron and Julien Francq. FPGA Implementation of Shabal: Our First Results (Version 2.0, February 19, 2010). Available online at http://www.shabal.com/wp-content/uploads/2010/03/FPGA-Implementation-of-Shabal-First-ResultsV2.0.pdf.

[11] Men Long. Implementing Skein Hash Function on Xilinx Virtex-5 FPGA Platform (Version 0.7, February 2, 2009). Available online at http://www.skein-hash.info/sites/default/files/skein_fpga.pdf.

[12] Stefan Tillich. Hardware Implementation of the SHA-3 Candidate Skein. IACR Eprint report 2009/159. Available online at http://eprint.iacr.org/2009/159.pdf.

[13] Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki. Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA. IACR Eprint report 2010/173. Available online at http://eprint.iacr.org/2010/173.pdf.

[14] Stefan Tillich, Martin Feldhofer, Mario Kirschbaum, Thomas Plos, Jörn-Marc Schmidt, and Alexander Szekely. High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. IACR Eprint report 2009/510. Available online at http://eprint.iacr.org/2009/510.pdf.

[15] Shai Halevi, William E. Hall, and Charanjit S. Jutla. The Hash Function Fugue (October 30, 2008). Available online at http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html/$FILE/NIST-submission-Oct08-fugue.pdf.

[16] Junfeng Fan. Hardware Evaluation of The Hash Function Hamsi. Available online at http://homes.esat.kuleuven.be/~okucuk/hamsi/implementations.html.

[17] Miroslav Knezevic and Ingrid Verbeiwhede. Hardware Evaluation of the Luffa Hash Family. 4th Workshop on Embedded Systems Security 2009. Available online at http://www.cosic.esat.kuleuven.be/publications/article-1282.pdf.

[18] Stefan Tillich, Martin Feldhofer, Wolfgang Issovits, Thomas Kern, Hermann Kureck, Michael Mühlberghuber, Georg Neubauer, Andreas Reiter, Armin Köfler, and Mathias Mayrhofer. Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and Skein. IACR Eprint report 2009/349. Available online at http://eprint.iacr.org/2009/349.pdf.

[19] Grøstl website. http://www.groestl.info/.

[20] Markus Bernet, Luca Henzen, Hubert Kaeslin, Norbert Felber, and Wolfgang Fichtner. Hardware Implementations of the SHA-3 Candidates Shabal and CubeHash. 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009. Available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5236043.

[21] Michel Kinsy and Richard Uhler. SHA-3: FPGA Implementation of ESSENCE and ECHO Hash Algorithm Candidates Using Bluespec. Available online at http://csg.csail.mit.edu/6.375/6_375_2009_www/projects/group1_report.pdf.

[22] Bernhard Jungk and Steffen Reith. On FPGA-based implementations of Grøstl. IACR Eprint report 2010/260. Available online at http://eprint.iacr.org/2010/260.pdf.

[23] Jérémie Detrey, Pierre Gaudry, and Karim Khalfallah. A Low-Area yet Performant FPGA Implementation of Shabal. IACR Eprint report 2010/292. Available online at http://eprint.iacr.org/2010/292.pdf.

[24] Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki. A Compact FPGA Implementation of the SHA-3 Candidate ECHO. IACR Eprint report 2010/364. Available online at http://eprint.iacr.org/2010/364.pdf.

[25] Wim Ramakers and Hans Narinx. Implementation and evaluation of SHA-3 candidates on FPGA. Extended abstract of Master Thesis "Implementatie en Evaluatie van SHA-3-Kandidaten op FPGA" (Dutch). Extended abstract available online at http://ehash.iaik.tugraz.at/uploads/1/12/Ramakers_Narinx2010ECHO-Hamsi-Luffa_ExtendedAbstract_ENGLISH.pdf. Full thesis available online at http://ehash.iaik.tugraz.at/uploads/6/62/Ramakers_Narinx2010ECHO-Hamsi-Luffa_Thesis_DUTCH.pdf.

[26] Julien Francq and Céline Thuillet. Unfolding Method for Shabal on Virtex-5 FPGAs: Concrete Results. IACR Eprint report 2010/406. Available online at http://eprint.iacr.org/2010/406.pdf.

[27] Shugo Mikami, Nagamasa Mizushima, Setsuko Nakamura, and Dai Watanabe. A Compact Hardware Implementation of SHA-3 Candidate Luffa (version 20101105). Available online at http://www.sdl.hitachi.co.jp/crypto/luffa/ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.pdf.

[28] Imed Mabrouk and Ryad Benadjila. ECHO webpage (hardware subpage). http://crypto.rd.francetelecom.com/ECHO/hard/.

[29] Luca Henzen, Pietro Gendotti, Patrice Guillet, Enrico Pargaetzi, Martin Zoller, and Frank K. Gürkaynak. Developing a Hardware Evaluation Method for SHA-3 Candidates. 12th International Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2010. Available online at http://www.springerlink.com/content/g0115v3272156r06/.

[30] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs. IACR Eprint report 2010/445. Available online at http://eprint.iacr.org/2010/445.pdf.

[31] Brian Baldwin, Neil Hanley, Mark Hamilton, Liang Lu, Andrew Byrne, Maire O'Neill, and William P. Marnane. FPGA Implementations of the Round Two SHA-3 Candidates. Second SHA-3 Candidate Conference, 2010. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf.

[32] Mohamed El Hadedy, Martin Margala, Danilo Gligoroski, and Svein J. Knapskog. Resource-Efficient Implementation of Blue Midnight Wish-256 Hash Function on Xilinx FPGA Platform. Second SHA-3 Candidate Conference, 2010. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/El-Hadedy_SmallSizeFPGA-BMW256.pdf.

[33] Shin'ichiro Matsuo, Miroslav Knezevic, Patrick Schaumont, Ingrid Verbauwhede, Akashi Satoh, Kazuo Sakiyama, and Kazuo Ota. How Can We Conduct "Fair and Consistent" Hardware Evaluation for SHA-3 Candidate? Second SHA-3 Candidate Conference, 2010. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/MATSUO_SHA-3_Criteria_Hardware_revised.pdf.

[34] Abdulkadir Akin, Aydin Aysu, Onur Can Ulusel, and Erkay Savas. Efficient Hardware Implementations of High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing. Second SHA-3 Candidate Conference, 2010. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SAVAS_SHA3_NIST_final.pdf.

[35] Xu Guo, Sinan Huang, Leyla Nazhandali, and Patrick Schaumont. Fair and Comprehensive Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations. Second SHA-3 Candidate Conference, 2010. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf.

[36] Jesse Walker, Farhana Sheikh, Sanu K. Mathew, and Ram Krishnamurthy. A Skein-512 Hardware Implementation. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/WALKER_skein-intel-hwd.pdf.

[38] Akashi Satoh, Toshihiro Katashita, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki. Hardware Implementations of Hash Function Luffa. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 2010. Available online at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5513102&tag=1.

[39] RCIS webpage (Other ASIC Implementations). http://staff.aist.go.jp/akashi.satoh/SASEBO/en/sha3/others.html.

[40] Luca Henzen, Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. VLSI Characterization of the Cryptographic Hash Function BLAKE. IEEE T VLSI, 2010. Available online at http://131002.net/data/papers/HAMP10.pdf.

[41] Mohamed El Hadedy, Danilo Gligoroski, and Svein J. Knapskog. Single Core Implementation of Blue Midnight Wish Hash Function on VIRTEX 5 Platform. Available online at http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/SmallSizeFPGA-BMWOct2010.pdf.