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Abstract. In this paper, we present a pseudo-collision attack on the compression function of all
Twister variants (224,256,384,512) with complexity of about 226.5 compression function evaluations.
Furthermore, we show how the compression function attack can be extended to construct collisions
for Twister-512 with complexity of about 2235.

1 Description of Twister

The hash function Twister is an iterated hash function based on the Merkle-Damg̊ard design
principle. It processes message blocks of 512 bits and produces a hash value of 224, 256, 384,
or 512 bits. If the message length is not a multiple of 512, an unambiguous padding method is
applied. For the description of the padding method we refer to [1]. Let m = m1‖m2‖ · · · ‖mt be
a t-block message (after padding). The hash value h = H(m) is computed as follows:

H0 = IV

Hi = f(Hi−1, Mi) for 0 < i ≤ t

Ht+1 = f(Ht, C) = h ,

where IV is a predefined initial value and C is the value of the checksum. It is computed
from the intermediate values of the internal state after each Mini-Round. Note that while for
Twister-224/256 the checksum is optional it is mandatory for Twister-384/512. The compression
function of Twister basically consists of 3 Maxi-Rounds. Each Maxi-Rounds consist of 3 or 4
Mini-Rounds (depending on the output size of Twister) and is followed by a feed-forward XOR-
operation.
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Fig. 1. The compression function of Twister-224/256.
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Fig. 2. The compression function of Twister-384/512.



The Mini-Round of Twister is very similar to the Advanced Encryption Standard (AES) [4].
It updates an 8× 8 state S of 64 bytes as follows:

MessageInjection A 8-byte message block M is inserted (via XOR) into the last row of the 8× 8
state S.

AddTwistCounter A 8-byte block counter is xored to the second column of the sate S.
SubBytes is identical to the SubBytes operation of AES. It applies an S-Box to each byte of the

state independently
ShiftRows is a cyclic left shift similar to the ShiftRows operation of AES. It rotates row j by

(j − 1) (mod 8) bytes to the left.
MixColumns is similar to the MixColumns operation of AES. It applies a 8 × 8-MDS matrix A

to each column of the state S.

After the last message block and /or the checksum has been processed, the final hash value is
generated from the last chaining value by an output transformation. For a detailed description
of Twister we refer to [1].

2 Pseudo-collision for the compression function

In this section, we present a pseudo-collision attack on the compression function of Twister for
all output sizes. The attack has a complexity of about 226.5 compression function evaluations.
In the attack we use the characteristic of Figure 3 for the first Maxi-Round (3 Mini-Rounds) of
Twister. The 3 Mini-Rounds are denoted by r1, r2 and r3 and the state after the Mini-Round
ri is denoted by Si. The initial state or chaining value is denoted by S0. In the attack we
add a difference in message word M1 (8 active bytes) to the state S0, which results in a full
active state S1 after the first Mini-Round r1. After the MixColumns transformation of the second
Mini-Round r2, the differences result in 8 active bytes of the last row of state S2, which can be
canceled by the message word M3 in the third Mini-Round r3.
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Fig. 3. Characteristic to construct a pseudo-collision in the first Maxi-Round.

The message differences and values for the state are found using a meet-in-the-middle ap-
proach and Figure 4 shows the characteristic in detail. We start with message word differences
in M1 and M3 at states S′1 and S2. The differences can be propagated backward and forward
through the MixColumns transformation with a probability of one (Step 1). Then, we simply
need to find a match for the resulting input and output differences of the SubBytes layer of
round r2 (Step 2).

Step 1. We start the attack with 8 active bytes in state S′1 and S2 (injected by message words
M1 and M3) and compute backward and forward to two full active states S′′2 and S′′′2 . The
is happens with a probability of one due to the properties of the ShiftRows and MixColumns
transformations. We repeat the computation 228 times for message word M1 and 228 times for
message word M3. Hence, we get 256 pairs of input/output differences for the S-boxes of round
r2.
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Fig. 4. We start with differences in states S′
1 and S2 injected by message words M1 and M3, and propagate

backward and forward (Step 1) to find a match for the S-box of round r2 (Step 2).

Step 2. Next, we show how to find a match for these input/output differences of the 64 S-boxes.
Note that for the S-box, the probability of a matching input/output difference pair is about one
half if we can chose the (absolute) value of the S-box input freely. Hence, we expect to find a
match for all 64 S-boxes with a probability of 2−64. Note that we can adapt the differences of
8 S-boxes by injecting proper differences in message word M2. This reduces the complexity of
finding a matching pair for the full SubBytes layer to 2−56. With the 228 input and 228 output
differences of Step 1, we expect to find at least one match due to the birthday paradox. Note
that in fact we get 256 matches since we can choose from at least two possible values for each
S-box match.

Once we have fixed the values of the state S′′2 such that the difference match for SubBytes
layer this also determines S0, and the differences in the message words. Hence, we have con-
structed a pseudo-collision for one Maxi-Round with complexity of 228. Note that the first Maxi-
Round is equal for Twister-224/256 and Twister-384/512. Hence, by constructing a pseudo-
collision for the first Maxi-Round we get a pseudo-collision for the compression function of
Twister-224/256 and Twister-384/512. The attack has a complexity of about 228/3 ≈ 226.5

compression function evaluations.

3 Collision Attack on Twister-512

In this section, we show how the pseudo-collision attack on Twister-512 can be extended to
the hash function. We first show how to construct collisions in the compression function of
Twister-512 with a complexity of 2223 compression function evaluations. This collision attack
on the compression function is then extended to a collision attack on the hash function. The
extension is possible by combining a multicollision attack and a generalized birthday attack
on the checksum. The attack has a complexity of about 2235 evaluations of the compression
function of Twister-512.

3.1 Collision Attack on the compression Function of Twister-512

For the collision attack on the compression function of Twister-512 we can use the characteristic
of the previous section in the last Maxi-Round (see Figure 5). Remember that in Twister-512
the 3 message words M6, M7 and M8 are injected in the last Maxi-Round. Hence, we can use
the first 5 message words M1 −M5 for a birthday match on 56 state bytes with a complexity
of 28·56/2 = 2224. Since the 8 bytes of the last row can always be adapted by using the freedom
in the (absolute) values of the message word M6, we only need to match 56 out of 64 bytes. It
can be summarized as follows:

1. Compute 2224 pseudo-collisions for the last Maxi-Round of Twister-512 and save them in a
list L. This has a complexity of about 3 · 2224 Mini-Round computations.
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Note that we can choose from 23·64 = 2192 differences in M6, M7 and M8 in the attack.
Furthermore, by varying the values of M7, we get additional 264 degrees of freedom. Hence,
we can construct up to 2256 pseudo-collisions for the last Maxi-Round.

2. Compute the input of the last Maxi-Round by going forward and check for a match in the list
L. After testing about 2224 candidates for the input of the last Maxi-Round we expect to find
a match in the list L and hence a collision for the compression function of Twister-512. Note
that finishing this step of the attack has a complexity of about 2224+2·2160+296+232 ≈ 2224

Mini-Round computations.

Hence, we can find a collision for the compression function of Twister-512 for an predefined
chaining value with complexity of about 2223 compression function evaluations (10 · 2223 Mini-
Round computations) and memory requirements of 2224. The memory requirements of this
attack can significantly be reduced by applying a memory-less variant of the meet-in-the-middle
attack introduced by Quisquater and Delescaille in [5].
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Fig. 5. The characteristic for the last Maxi-Round of Twister-512.

3.2 Collision Attack on the Hash Function Twister-512

In this section, we show how the collision attack on the compression function can be extended
to the hash function. The attack has a complexity of about 2235 evaluations of the compression
function of Twister-512. Note that the hash function defines, in addition to the common iterative
structure, a checksum computed over the outputs of each Mini-Round which is then part of
the final hash computation. Therefore, to construct a collision in the hash function we have to
construct a collision in the iterative structure (i.e. chaining variables) as well as in the checksum.
To do this we use multicollisions similar as in the recent collision attack on the hash function
GOST [3].

A multicollision is a set of messages of equal length that all lead to the same hash value. As
shown in [2], constructing a 2t collision, i.e. 2t messages consisting of t message blocks which all
lead to the same hash value, can be done with a complexity of about t · 2x for any iterated hash
function, where 2x is the cost of constructing a collision in the compression function. As shown
in the previous section, collisions for the compression function of Twister-512 can be constructed
with a complexity of 2223. Hence, we can construct a 2 ·2256 collision with a complexity of about
257 · 2223 ≈ 2231 evaluations of the compression function of Twister-512. With this method we
get 2257 values for the checksum C that all lead to the same chaining value H257.

To construct a collision in the checksum of Twister-512 we have to find 2 distinct messages
consisting of 258 message blocks (257 message blocks for the multicollision and 1 message
block for the padding) which produce the same value in the checksum. By applying a birthday
attack we can find these 2 messages with a complexity of about 2257 checksum computations
and memory requirements of 2256. Due to the high complexity and memory requirements of the
birthday attack, one could see this part as the bottleneck of the attack. However, the runtime and
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memory requirements can significantly be reduced by applying a generalized birthday attack
introduced by Wagner in [6]. Wagner shows that if ` is a power of two then the memory
requirements and the running time for the generalized birthday problem is given by 2n/(1+lg `)

and ` · 2n/(1+lg `), respectively. Note that in the standard birthday attack we have ` = 21.
Table 1 shows the complexity and memory requirements for the collision attack depending

on the choice of `. The first row shows the complexity for a standard birthday attack (` = 2)
with a checksum computation complexity above the birthday bound. For larger values of ` the
complexity for the checksum computation decreases while the total complexity increases only
slightly. Hence, in the case of ` = 128 we can find a collision for the hash function Twister-512
with a complexity of about 2235 compression function calls.

Table 1. Complexities in base 2 logarithm for different values of `.

memory checksum compression function
` requirements computations computations

2 256 257 231
4 170,7 172,7 231,4
8 128 131 232
16 102,4 106,4 232,7
32 85,3 90,3 233,4
64 73,1 79,1 234,2
128 64 71 235

4 Conclusion

This paper shows two things: Although Twister is heavily based on a Merkle-Damgaard style
iteration (as many other hash function like SHA-2), the corresponding reduction proof that
reduces the collision resistance of the hash function to the collision resistance of the compression
function is not applicable anymore. We show practical (in time and memory) attacks that
invalidate such an assumption about the compression function.

Secondly, we give a theoretical collision short-cut attack on the hash function Twister-512.
Although the practicality of the proposed attack might be debatable, it nevertheless exhibits
non-random properties that are not present in SHA-512.
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