An Observation on JH-512

Florian Mendel¹ and Søren S. Thomsen²

Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria. florian.mendel@iaik.tugraz.at ² Department of Mathematics, Technical University of Denmark Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark. crypto@znoren.dk

Abstract. In this paper, we present a generic preimage attack on JH-512. We do not claim that our attack breaks JH-512, but it shows weaknesses in the design principles of JH-512 which do not exist in other hash functions, *e.g.*, the SHA-2 family.

1 Description of JH

The hash function JH is an iterated hash function. It processes message blocks of 512 bits and produces a hash value of 224, 256, 384, or 512 bits. In each iteration the compression function f is used to update the chaining value of 1024 bits as follows:

$$H_i = f(H_{i-1}, M_i)$$

where H_{i-1} is the previous chaining value, M_i is the current message block. The compression function f is defined as follows:

$$f(H_{i-1}, M_i) = E(H_{i-1} \oplus M_i \| 0^{512}) \oplus 0^{512} \| M_i$$

where E is a permutation of 1024 bits, and 0^{512} means the string of 512 '0' bits. The details of E are irrelevant to the attack described in this paper, but we assume that the outputs of f are roughly Poisson distributed when H_{i-1} is fixed.

After the last message block has been processed, the final hash value is generated from the last chaining value by truncation. For a detailed description of JH we refer to [3].

2 Generic Preimage Attack

In this section, we present a preimage attack on JH-512 with complexity of about $2^{510.3}$ compression function evaluations. The attack is based on the following two observations on the compression function f.

Observation 1. The compression function f is invertible, meaning that given H_i and M_i , it is easy to find H_{i-1} such that $f(H_{i-1}, M_i) = H_i$, namely as $H_{i-1} = E^{-1}(H_i \oplus 0^{512} || M_i) \oplus M_i || 0^{512}$.

Hence, pseudo-collisions and pseudo-preimages can be found trivially [1].

Observation 2. For arbitrary H_{i-1} , M_i and $H_{i-1}^* = H_{i-1} \oplus \Delta || 0^{512}$, $M_i^* = M_i \oplus \Delta$, the following relation holds:

$$f(H_{i-1}, M_i) \oplus f(H_{i-1}^*, M_i^*) = 0^{512} \|\Delta$$

for any choice of Δ .

Furthermore, the attack makes use of *multicollisions*.

Definition 1. Let g be some function. An r-collision for g is an r-set $\{x_1, \ldots, x_r\}$ such that $g(x_1) = \ldots = g(x_r)$. A multicollision is an r-collision for some r > 1.

If g is a random n-bit function, then finding an r-collision in g has a complexity of about

$$q = (r! \cdot 2^{n(r-1)})^{1/r} \tag{1}$$

evaluations of g [2]. This estimate can be obtained from the Poisson formula $F(r, \lambda) = \lambda^r \exp(-\lambda)/r!$ by using $\lambda = q2^{-n}$ and setting $F(r, \lambda) = 2^{-n}$. Furthermore, the factor $\exp(-\lambda)$ is removed, since it is very close to 1 when $q \ll 2^n$. Finding ℓ r-collisions requires only a factor about $\ell^{1/r}$ more work than finding a single r-collision, which is seen by setting $F(r, \lambda) = \ell 2^{-n}$.

We will use this to construct preimages for JH-512 with a complexity of about $2^{510.3}$. Assume we want to construct a preimage for the 512-bit target image h. The preimage will consist of 4 message blocks. The attack can be summarised as follows.

- 1. Choose an arbitrary message block M_4 with correct padding, and compute $H_3 = f^{-1}(x||h, M_4)$ for an arbitrary 512-bit value x.
- 2. Compute 2^{509} candidates for $H_2 = f^{-1}(H_3, M_3)$ with arbitrary choices of M_3 , and save the pairs (H_2, M_3) in a list L.
- 3. Use M_1 to construct an *r*-collision for the 512 higher bits of H_1 , given the initial value H_0 of JH-512. For r = 51 this has a complexity of about $2^{506.3}$ compression function evaluations. In other words, we find r = 51 message blocks M_1^k for $0 \le k < r$ such that b^k is equal with $H_1^k = a^k ||b^k$.
- 4. Compute $\Delta^k = H_1^0 \oplus H_1^k$ for $0 \le k < r$.
- 5. Choose an arbitrary message block M_2 and compute $H_2 = f(H_1^0, M_2)$ and check if $H_2^k = H_2 \oplus \Delta^k$ for $0 \le k < r$ is in the list L. The probability for each choice of M_2 is about $51 \cdot 2^{1024-509}$, so we need to try an expected $2^{515}/51 \approx 2^{509.3}$ message blocks. Note that only about $2^{512}/51 \approx 2^{506.3}$ different message blocks can be chosen in this step without repetition, and hence we must find an expected 2^3 51-collisions in step 3. However, 2^3 51-collisions can be found in time only a factor about $2^{3/51} \approx 2^{0.06}$ more than a single 51-collision. Thus, the "new" complexity of step 3 is $2^{506.3}$ (unchanged to one decimal place), and the current step has complexity about $2^{509.3}$ (we ignore the 51 xors needed in this step, assuming this takes negligible time compared to one evaluation of f).
- 6. Once we have found H_2^k such that a pair (H_2^k, M_3) is in the list L, we have to adjust M_1 and M_2 accordingly such that $f(f(H_0, M_1), M_2) = H_2^k = H_2 \oplus \Delta^k$.

It is easy to see that this can be achieved by setting $M_1 = M_1^k$ and $M_2 = M_2 \oplus \Delta^k$, since:

$$H_1 = f(H_0, M_1^k) = H_1^k = H_1^0 \oplus \Delta^k$$
$$H_2 = f(H_1^0 \oplus \Delta^k, M_2 \oplus \Delta^k) = H_2 \oplus \Delta^k = H_2^k$$

Hence, we can find a preimage for JH-512 with a total complexity of about $2^{509} + 2^{506.3} + 2^{509.3} \approx 2^{510.3}$ compression function evaluations.

References

- 1. Nasour Bagheri. Pseudo-collision and pseudo-second preimage on JH. NIST mailing list (2008-29-11), 2008.
- Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday Paradox for Multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors, *ICISC*, volume 4296 of *LNCS*, pages 29–40. Springer, 2006.
- Hongjun Wu. The Hash Function JH. Submission to NIST, 2008. Available online: http://icsd.i2r.a-star. edu.sg/staff/hongjun/jh/jh.pdf.