Practical Collision and Preimage Attack on DCH- n

Mario Lamberger and Florian Mendel
Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Abstract

In this paper, we show practical collision and preimage attacks on DCH- n. The attacks are based on the observation of Khovratovich and Nikolic that the chaining value is not used in the underlying block cipher. Based on this observation, we show a trivial collision resp. multi-collision attack on DCH- n and a preimage attack with a complexity of about 583 compression function evaluations.

1 Description of DCH-n

The hash function DCH- n is an iterated hash function based on the MerkleDamgaard design principle. It processes message blocks of 512 bits (504 bits message input) and produces a hash value of $n=224,256,384$ or 512 bits. In each iteration the compression function f is used to update the chaining value of 512 bits as follows:

$$
H_{i+1}=f\left(H_{i}, M_{i}\right)=H_{i} \oplus M_{i} \oplus g\left(M_{i}\right)
$$

where $g(M)$ is some non-linear transformation. For a detailed description of DCH- n we refer to [3].

2 Cryptanalysis

In this section, we will present our collision and preimage attack on DCH. The attack is an extension of the attack of Khovratovich and Nikolic [1] and is based on similar principles as the attacks on SMASH [2]. Let $\gamma_{i}\left(M_{i}\right)=g\left(M_{i}\right) \oplus M_{i}$. Then the above equation can be rewritten as:

$$
H_{i}=H_{0} \oplus \gamma_{0}\left(M_{0}\right) \oplus \gamma_{1}\left(M_{1}\right) \oplus \cdots \oplus \gamma_{i}\left(M_{i}\right)
$$

Note that the γ_{i} are different since in DCH- n a block counter is used in each message block to compute $M_{i} \oplus g\left(M_{i}\right)$. However, this counter is reset to 0 after computing 32 message blocks. Hence, we know that $\gamma_{i}=\gamma_{j}$ for $i \equiv j(\bmod 32)$. Based on this observation, we now introduce an alternative description of DCHn. Let $\Gamma\left(m_{0}\right)=\gamma_{0}\left(M_{0}\right) \oplus \gamma_{1}\left(M_{1}\right) \oplus \cdots \oplus \gamma_{31}\left(M_{31}\right)$ then $H_{32}=H_{0} \oplus \Gamma\left(m_{0}\right)$ with $m_{0}=M_{0}\left\|M_{1}\right\| \cdots \| M_{31}$. In general, we have

$$
H_{(i+1) \cdot 32}=H_{0} \oplus \Gamma\left(m_{0}\right) \oplus \cdots \oplus \Gamma\left(m_{i}\right)
$$

with $m_{i}=M_{32 \cdot i}\left\|M_{32 \cdot i+1}\right\| \cdots \| M_{32 \cdot i+31}$.

2.1 Collision Attack

Based on this alternative description of DCH- n, we now describe the collision attack. Assume we have given a message $M=m_{0} \| m_{1}$ consisting of $(32 \cdot 63) \cdot 2$ bytes. Then the chaining value $H_{64}=H_{0} \oplus \Gamma\left(m_{0}\right) \oplus \Gamma\left(m_{1}\right)$. Furthermore, let $m_{1}=m_{0}$ then $H_{64}=H_{0}$. Hence, constructing a collision in DCH- n is easy.

1. Choose an arbitrary value for m_{0} and compute H_{64} with $m_{1}=m_{0}$.
2. Choose an arbitrary value for $m_{0}^{*} \neq m_{0}$ and compute H_{64} with $m_{1}^{*}=m_{0}^{*}$. It is easy to see that this leads to a collision for $m_{0} \| m_{1}$ and $m_{0}^{*} \| m_{1}^{*}$ with $H_{64}=H_{64}^{*}=H_{0}$.

Hence, we can trivially construct collisions for DCH-n. Note that the messages in the colliding message pair consist of 2^{6} message blocks. Furthermore, we can trivially construct t-collisions (for $0<t<2^{32.63}$) for DCH- n, since there exists many possible choices for m_{0} in our attack. Note that all these attacks apply to DCH- n for all output sizes.

2.2 Preimage Attack

In a similar way as in the collision attack, we can also construct preimages for DCH- n. The attack is based on the observation that the outputs of DCH- n form a vector space of dimension n over $G F(2)$ (cf. also [2]). Hence, we only need to compute a basis of the output vector space to construct preimages for DCH- n. In the following we set $N:=512 \cdot 32 \cdot 2=2^{15}$. Furthermore, we assume $n=512$ since the other output lengths result from truncations of the $n=512$ version. Then, the attack can be summarized as follows:

1. Assume we want to construct a preimage for h consisting of $N+1$ message blocks. Then, we have to find a message M such that:

$$
h=H_{0} \oplus \bigoplus_{i=0}^{N} \gamma_{i \bmod 32}\left(M_{i}\right)
$$

2. Choose the last message block M_{N} such that the padding is correct.
3. Once, we have fixed the last message block, we have to find the remaining message blocks M_{i} for $0 \leq i<N$ such that:

$$
\bigoplus_{i=0}^{N-1} \gamma_{i \bmod 32}\left(M_{i}\right)=h \oplus H_{0} \oplus \gamma_{0}\left(M_{N}\right)
$$

For simplicity, let us now use the alternative description of DCH-n. Then the above equation can be written as:

$$
\bigoplus_{i=0}^{N / 32-1} \Gamma\left(m_{i}\right)=c
$$

where $c=h \oplus H_{0} \oplus \gamma_{0}\left(M_{N}\right)$ and $m_{i}=M_{32 \cdot i}\left\|M_{32 \cdot i+1}\right\| \cdots \| M_{32 \cdot i+31}$. To solve this equation, we use now the fact that the outputs of DCH- n form a vector space.
4. Compute ℓ vectors $a^{k}=\Gamma\left(m_{0}^{k}\right) \oplus \Gamma\left(m_{1}^{k}\right)$ with arbitrary values for m_{0} and m_{1} and save the triple $\left(a^{k}, m_{0}^{k}, m_{1}^{k}\right)$ in a list L.
5. From the set of $\ell \geq n$ vectors a^{k} compute a basis of the output vector space of DCH- n. The probability for $\ell \geq n$ vectors to contain n vectors which are linearly independent is

$$
\prod_{i=0}^{n-1} \frac{2^{\ell}-2^{i}}{2^{\ell}}=\prod_{i=0}^{n-1}\left(1-2^{i-\ell}\right) \geq 2^{-\frac{2^{n}-1}{2^{\ell-1}}}
$$

This means that we can basically construct such a basis with complexity of $64 \cdot \ell$ compression function evaluations. This can be reduced to $63+\ell$ evaluations of the compression function by fixing all blocks in m_{0}^{k} and all but one block in m_{1}^{k} when generating the basis of the output vector space. For example choosing $n=512$ and $\ell=520$ we already get a probability of 0.9961 for finding a basis and thus need only 583 compression function evaluations. Note, that constructing the basis is a one time effort. Let $B=$ $\left\{a^{k_{0}}, \ldots, a^{k_{n-1}}\right\}$ denote the basis for the output vector space.
6. We then represent c with respect to this basis $c=x_{0} a^{k_{0}}+\cdots+x_{n-1} a^{k_{n-1}}$ by solving the linear system over $G F(2)$.
7. Next, we use the x_{j} to construct $m_{0}, m_{1}, \ldots, m_{1023}$ such that:

$$
\bigoplus_{i=0}^{1023} \Gamma\left(m_{i}\right)=c .
$$

- If $x_{j}=0$ for $0 \leq j<512$ set $m_{2 j}=\alpha$ and $m_{2 j+1}=\alpha$ for some arbitrary value of α. Note that $\Gamma(\alpha) \oplus \Gamma(\alpha)=0$ and hence, $m_{2 j}$ and $m_{2 j+1}$ have no influence on the computation of c.
- If $x_{j}=1$ for $0 \leq j<512$ set $m_{2 j}=m_{0}^{j}$ and $m_{2 j+1}=m_{1}^{j}$ such that $\Gamma\left(m_{0}^{j}\right) \oplus \Gamma\left(m_{1}^{j}\right)=a^{j} 0 \leq j<512$.
- This technicality is necessary because we want to construct a preimage of fixed length.

Hence, we can construct a preimage for DCH-n by solving a linear system of equations of dimension 512×512 over $G F(2)$. Constructing the basis has a complexity of about 583 compression function evaluations.

Furthermore, the preimage attack can be used to construct second preimages for DCH- n with the same complexity. Note that by using the above described method, preimages (or second preimages) always consist of $N+1=2^{15}+1$ message blocks.

3 Conclusion

We showed, that it is trivial to construct collisions and (second) preimages for DCH- n. Furthermore, the presented attack applies to all similar constructions not introducing the chaining variable into the compression function.

References

1. Dmitry Khovratovich and Ivica Nikolic. Cryptanalysis of DCH-n, 2008. Available online: http://lj.streamclub.ru/papers/hash/dch.pdf.
2. Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of the hash function design strategy called smash. IEEE Transactions on Information Theory, 54(8):3647-3655, 2008.
3. David A. Wilson. The DCH Hash Function. Submission to NIST, 2008. Available online: http://web.mit.edu/dwilson/www/hash/dch/Supporting_Documentation/ dch.pdf.
