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Abstract. In this paper we analyse the security of the SHA-3 candi-
date ARIRANG. We show that bitwise complementation of whole regis-
ters turns out to be very useful for constructing high-probability differ-
ential characteristics in the function. We use this approach to find near-
collisions with Hamming weight 32 for the full compression function as
well as collisions for the compression function of ARIRANG reduced to 26
rounds, both with complexity close to 20 and memory requirements of
only a few words. We use near collisions for the compression function to
construct pseudo-collisions for the complete hash functions ARIRANG-
224 and ARIRANG-384 with complexity 223 and close to 20, respectively.
We implemented the attacks and provide examples of appropriate pairs
of H,M values.

1 Introduction

ARIRANG [1] is one of the first-round candidates in the SHA-3 competition
organized by NIST. It is an iterated hash function that uses a variant of the
Merkle-Damg̊ard mode augmented by a block counter. The compression func-
tion is a dedicated design that iterates a step transformation that can be seen as
a target-heavy unbalanced Feistel network [7]. Its construction seems to be in-
fluenced by an earlier design called FORK-256 [3] with the important difference
of using a bijective function based on a layer of S-boxes and an MDS mapping
as the source of non-linearity. This prevents attacks similar to the ones devel-
oped for FORK-256 [5, 4, 2] from working on ARIRANG. A single sequence of 40
steps rather than four parallel branches makes it immune to meet-in-the-middle
attacks [6].

Our contributions In this paper we report results of our security assessment of
ARIRANG. The initial observation that motivated our analysis was the fact that
differences created by complementing (flipping) all bits in a register propagate
quite nicely through the function due to a particular interaction of the layer of
S-boxes and an MDS mapping. We were able to exploit this fact to derive a range



of attacks on the compression function and extend some of them to attacks on
the complete hash function.

After a short description of ARIRANG given in section 2 we explain in de-
tails our ideas of managing all-ones differences in section 3 and show how to
find conforming messages in section 4. After that, we describe two attacks on
ARIRANG. In section 5 we show how to find collisions for 26 out of 40 steps of
the compression function with complexity close to the cost of computing a single
hash value of ARIRANG. Next, we show in Section 6 that by injecting all-ones
difference in one of the chaining values we can easily (with complexity close
to one evaluation) obtain 32-bit (resp. 64-bit) near collisions for the full com-
pression function of ARIRANG-256 (resp. ARIRANG-512). We use the freedom of
selecting in which chaining register we want to have differences to convert those
near-collisions for the compression function to pseudo-collisions for the full hash
functions ARIRANG-224 and ARIRANG-384 which we can obtain with complex-
ity 223 and close to 20 respectively. Finally, we discuss some open problems and
conclude in Section 7. Our results are summarized in Table 1.

Table 1. Summary of the results of this paper.

Compression function

Result Complexity Example

32-bit near-collision for full ARIRANG-256 compress 1 Y

64-bit near-collision for full ARIRANG-512 compress 1 Y

26-step collision for ARIRANG-256/512 1 Y

Hash function

Result Complexity Example

pseudo-collision for full ARIRANG-224/384 hash 223 / 1 Y

2 Brief description of ARIRANG

We start with providing a minimal description of ARIRANG necessary to under-
stand our attacks. More details can be found in the original submission docu-
ment.

Compression function The fundamental building block of the hash function
ARIRANG-256 (ARIRANG-512) is the compression function that takes 256-bit
(512-bit) chaining value and 512-bit (1024-bit) message block and outputs a
new 256-bit (512-bit) chaining value. The function, depicted in Fig. 1, consists
of two main parts: the message expansion process and the iteration of the step
transformation.

The message expansion function takes as input 16 words of the message
M0, . . . , M15 and produces 80 expanded message words in two stages. First, 32
words Wi are generated according to the procedure described in Alg. 1, where
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Fig. 1. Compression function of ARIRANG.

Ki are word constants and ri are fixed rotation amounts. Our attacks do not
depend on their actual values. Next, these 32 words are used 80 times, two in
each step transformation, in the order defined by the function σ described in
Table 2.

Table 2. Ordering σ of expanded message words Wi used in step transformations.

i σ(i) i σ(i) i σ(i) i σ(i)

0, 1 16, 17 20, 21 20,21 40, 41 24, 25 60, 61 28, 29
2, 3 0, 1 22, 23 3, 6 42, 43 12, 5 62, 63 7, 2
4, 5 2, 3 24, 25 9,12 44, 45 14, 7 64, 65 13, 8
6, 7 4, 5 26, 27 15, 2 46, 47 0, 9 66, 67 3, 14
8, 9 6, 7 28, 29 5, 8 48, 49 2, 11 68, 69 9, 4

10, 11 18, 19 30, 31 22,23 50, 51 26, 27 70, 71 30, 31
12, 13 8, 9 32, 33 11,14 52, 53 4, 13 72, 73 15, 10
14, 15 10, 11 34, 35 1, 4 54, 55 6, 15 74, 75 5, 0
16, 17 12, 13 36, 37 7,10 56, 57 8, 1 76, 77 11, 6
18, 19 14, 15 38, 39 13, 0 58, 59 10, 3 78, 79 1, 12

The iterative part uses the step transformation to update the state of 8
chaining registers, A, B, . . . , H . First, the input chaining values H [0], . . . , H[7]
are loaded into chaining registers A, . . . , H . Then, the step tranformation is
applied 20 times. After 20 steps, the initial chaining value is XOR-ed to the
current chaining values and the computation is carried on for another 20 steps.



Algorithm 1 Generation of expanded message words in ARIRANG.

for i = 0, . . . , 15 do

Wi ←Mi

end for

W16 ← (W9 ⊕W11 ⊕W13 ⊕W15 ⊕K0) ≪ r0

W17 ← (W8 ⊕W10 ⊕W12 ⊕W14 ⊕K1) ≪ r1

W18 ← (W1 ⊕W3 ⊕W5 ⊕W7 ⊕K2) ≪ r2

W19 ← (W0 ⊕W2 ⊕W4 ⊕W6 ⊕K3) ≪ r3

W20 ← (W14 ⊕W4 ⊕W10 ⊕W0 ⊕K4) ≪ r0

W21 ← (W11 ⊕W1 ⊕W7 ⊕W13 ⊕K5) ≪ r1

W22 ← (W6 ⊕W12 ⊕W2 ⊕W8 ⊕K6) ≪ r2

W23 ← (W3 ⊕W9 ⊕W15 ⊕W5 ⊕K7) ≪ r3

W24 ← (W13 ⊕W15 ⊕W1 ⊕W3 ⊕K8) ≪ r0

W25 ← (W4 ⊕W6 ⊕W8 ⊕W10 ⊕K9) ≪ r1

W26 ← (W5 ⊕W7 ⊕W9 ⊕W11 ⊕K10) ≪ r2

W27 ← (W12 ⊕W14 ⊕W0 ⊕W2 ⊕K11) ≪ r3

W28 ← (W10 ⊕W0 ⊕W6 ⊕W12 ⊕K12) ≪ r0

W29 ← (W15 ⊕W5 ⊕W11 ⊕W1 ⊕K13) ≪ r1

W30 ← (W2 ⊕W8 ⊕W14 ⊕W4 ⊕K14) ≪ r2

W31 ← (W7 ⊕W13 ⊕W3 ⊕W9 ⊕K15) ≪ r3

At the end, the usual feed-forward is applied by XOR-ing initial chaining values
to the output of the iteration.

The step transformation updates chaining registers using two expanded mes-
sage words Wσ(2t), Wσ(2t+1) as follows

T1 ← G(256)(At ⊕Wσ(2t)),

Bt+1 ← At ⊕Wσ(2t),

Ct+1 ← Bt ⊕ T1,

Dt+1 ← Ct ⊕ (T1 ≪ 13),

Et+1 ← Dt ⊕ (T1 ≪ 23),

T2 ← G(256)(Et ⊕Wσ(2t+1)),

Ft+1 ← Et ⊕Wσ(2t+1),

Gt+1 ← Ft ⊕ T2,

Ht+1 ← Gt ⊕ (T2 ≪ 29),

At+1 ← Ht ⊕ (T2 ≪ 7).

This transformation is illustrated in Fig. 2. In ARIRANG-256, it uses a function
G(256) which splits 32-bit input value into 4 bytes, transforms them using AES
S-Box and feeds the result to the AES MDS transformation, as presented in
Fig. 3. ARIRANG uses the same finite field as AES, defined by the polynomial



x8 + x4 + x3 + x + 1. MDS mapping for 256 bit variant is defined as

MDS256 =
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In ARIRANG-512, an analogous function G(512) is defined using a layer of 8
S-boxes and an appropriate 8× 8 MDS matrix.
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Fig. 2. Step transformation of ARIRANG updates the state of eight chaining registers.
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Fig. 3. Function G(256) of ARIRANG-256 uses four AES S-Boxes followed by AES
MDS mapping.

Hash function The hash function ARIRANGis an iterative construction closely
following the original Merkle-Damg̊ard mode. The message is first padded by
a single ’1’ bit followed by an appropriate number of zero bits and a 64-bit
field containing the length of the original message. After padding and appending
block length field, the message is divided into 512-bit blocks and the compression
function is applied to process each of the blocks one by one. The construction
has one additional variable compared to the plain Merkle-Damg̊ard mode. A
new variable that stores the current message block index is introduced and its
value is XORed before each appliaction of the compression function. However,
this does not affect our attacks.



3 All-one differences

From the description of ARIRANG-256, it is clear that it uses only three essential
building blocks: XORs, bit rotations and the function G(256), which is the only
part non-linear over F2.

Let us focus on the function G(256) first. First, note that for the AES S-Box
input difference of 0xff maps to output difference 0xff with probability 2−7,
the two values x for which S(x)⊕ S(x⊕ 0xff) = 0xff are 0x7e, 0x81.

The second observation is that for the 256-bit MDS mapping all the vectors
of the form (a, a, a, a) are fixed points since a · z + a(z + 1) + a + a = a.

This means all-one difference will map to all-one difference through MDS256.
In turns, there are 16 32-bit values x such that

G(256)(x) ⊕G(256)(x⊕ 0xffffffff) = 0xffffffff

and the probability of such a differential is 2−28.
This means we can consider a differential that uses only all-one differences

in active registers. The big advantage of such differences is that they are rota-
tion invariant, so we can easily model differentials like that by replacing all the
rotations and function G(256) with identity.

MDS mapping for ARIRANG-512 is different and all-ones is not its fixed-point,
but after combining S-box layer with MDS, we get the differential of the same
type with probability 2−56, so the same principle applies to the larger variant as
well.

To minimize the complexity of the attack, we need to use as few active
G(256)-functions as possible in the part of the function where we cannot control
input values to them. Since there are only 216 possible combinations of all-one
differences in message words and 224 combinations including chaining registers
H [0], . . . , H[7], it is easy to enumerate them all using a computer search.

4 Message Adjustments

The method used to find messages that make the differences in the actual func-
tion to follow the differential can be called a message adjustment strategy.

We have full control over the message words W0, . . . , W15. Through com-
binations of the message words, we can still control some of the messages Wi

for 16 ≤ i ≤ 31. We can modify the messages used in the first 4 steps freely,
yet leaving the output chaining values of 4-th step unchanged by modifying the
corresponding input chaining values H [0], . . . , H[7].

For example, changing W2 and H [6] by the same amount (⊕ both with a
same value) will keep the output of step 3 stable. Beyond step 4, if we change
the value of W6 in step 5, we still make the output of step 5 stable by changing
the H [4] by a same amount. However this change will be propagated by the
right G function in step 1, we can fix this by changing the H [5], H [6] and H [7]
by proper values, respectively. This method applies to W7 in step 5 similarly.
In step 6, if W19 is changed, we can still keep the output after step 6 stable.
We achieve this by ⊕ with H [7] by the same amount of the change. Note that
this difference will be propagated through the left G function in step 2 (Note



we can only do this when the left G in step 2 is not active). We can fix this by
⊕ with H [0], H [1], H [2] by proper values, respectively. Then the change in H [0]
will be propagated through the G function in step 1. We then fix this by ⊕ with
H [0], H [1], H [2] by proper values. Similar method applies to W18 in step 6.

5 Collisions for reduced round compression function

A search for collision configuration that minimizes the overall number of active
G(256) functions shows that the best strategy is to flip all message words. Then
throughout the whole compression function only 16 out of 80 G(256) are active.
When we restrict the attention to steps 20-40 (the part which almost certainly is
beyond any message-modification techniques) we can find a configuration with
only 5 active G(256) and in fact only 3 in steps 22-40. Details of minimal paths
are summarized in Table 3. The second characteristic with probability 2−140 in
steps 21-40 shows that the claim made in [1, section 6.2, page 37] that “there is

no collision producing characteristics which has a probability higher than 2−256

in the last two rounds” is based on assumptions that do not hold in practice.

Table 3. Results of search for collision characteristics in ARIRANG-256

type minimize min. value diffs in message words

collisions total active G 16 0,. . . ,15 (all)
collisions active G rounds 20-40 5 2,3,7,8,9,13

Even though using all-one differences does not seem to allow for finding good
collision differentials for the full compression function, one can use them to mount
an attack on its reduced-round variants. In the rest of this section we illustrate
it with a method that instantly finds collisions for 26 steps of ARIRANG-256.

5.1 Finding Step Reduced Collision Differential

To find the optimal path for reduced-round attack, we searched the all-one dif-
ferentials using the following criteria.

1. We count the number of active G from step 11, as we have a complete control
over the first 10 steps,

2. there are only differences in message words, not in chaining values,
3. the differential should give round reduced collision,
4. the differential should have minimum number of active G,
5. preferably, the active G-s should appear as early as possible.

The search result shows a differential with differences in message words M4, M6,
M8, M10 and the corresponding active G is shown in Table 4, steps after 16 are
not shown because there is no active G between step 16 and step 26 and we do
not consider steps after step 26.



Table 4. 26-step reduced collision characteristics in ARIRANG

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 W1

3 W2 W3

4 W4 X W5

5 W6 X W7 X

6 W18 X W19

7 W8 W9 X

8 W10 X W11 X

9 W12 X W13 X

10 W14 X W15 X

11 W20 W21 X

12 W3 W6

13 W9 X W12

14 W15 W2

15 W5 X W8

5.2 Finding Step Reduced Collisions

To find the example of the 26-step reduced collision, we need to deal with all
those active G so that the input to the active G are one of those all-one difference
pairs. As our algorithm runs in a determinstic way, we actually force the input
to a chosen pair (γ, γ̄) = (81818181, 7E7E7E7E). In the first 10 steps, whenever
there is an active G, we can fix the input by modifying the immediate message
word. After step 10, we follow the algorithm below:

1. For active G in step 11, we change W21 to the proper value by modifying W1

and W3 by the same amount so that W18 does not change, we compensate
the change of W1 and W3 using the method in section 4.

2. For active G in step 13, we modify the message word W6, which is used one
step before. We modify W2 also by a same amount so that W19 is constant,
and then compensate the changes.

3. For active G in step 15, we modify W5 directly. We compensate the change
of W5 and W18.

As we can see the algorithm is determinstic, so the complexity is 1 with no
memory requirements. An example of the chaining values and a pair of messages
obtained using this procedure is shown in Table 5.

6 Pseudo-collisions for ARIRANG-224 and
ARIRANG-384

If we relax the condition of no difference at the output of the compression func-
tion we can find much better differentials. A near-collision attack for the complete
compression function makes use of the three particular features of the compres-
sion function of ARIRANG. The first one is the existence of all-ones differentials.



Table 5. 26-step reduced collision for ARIRANG-256 with differences in M only.

input H C0E5A81E 952A32CB 730C4EB7 78730E23 757D7CAC 00000000 D69B0F52 D69B0F52

M
D69B0F52 78730E23 D69B0F52 730C4EB7 E3E3E3E3 952A32CB 1A1A1A1A 49494949

00000000 02020202 D3DCBDB8 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

M’
D69B0F52 78730E23 D69B0F52 730C4EB7 1C1C1C1C 952A32CB E5E5E5E5 49494949

FFFFFFFF 02020202 2C234247 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

output of step 26 B4931778 F1615E8C 0E3756B9 93ED3536 4EBCBBFE 86C9ADD8 34334617 340155F6

The second element that enables our attack is the fact that in the first steps we
can manipulate chaining values and message words to adjust input values of G-
functions, similarly to the message modification strategy. Finally, we exploit the
double-feed-forward feature of the compression function (cf. Fig. 1) to restrict
the differences to only first half of the steps.

Once we have such near-collisions for the compression function, we can use
them to construct pseudo-collisions for the complete hash function ARIRANG-224
and ARIRANG-384. This is possible thanks to the details of message padding how
and the final digest is produced. Because the final hash value is just a truncated
chaining value, we can introduce the chaining differences in the register which
is going to be truncated when producing the digest. Also, the padding and
appending the length information does not use a separate message block but
rather a few last words of a block. This means we need to deal with only one
message block with the last three words determined by the padding scheme and
the message length.

We will talk about ARIRANG-224, however our attack is not specific to it, so
it also works for ARIRANG-384.

6.1 Finding Near Collision Differential

Based on the same idea and model as used for searching the collision, we did the
search for finding near collisions and we observed an interesting phenomenon.
With input differences in a single chaining variable, we could get differentials
that go through the first twenty steps and collapse back to the same register at
step 20. Then after the middle feed-forward, there is no difference in chaining
registers and nothing happens until the final feed-forward. Only then the initial
difference is injected again and results in an output difference restricted to only
one register, 32 bits in case of ARIRANG-256.

With difference in H[7], we find it is easy to find the appropriate chaining
values and messages. And advantage of this differential is, H[7] of the final output
is discarded for ARIRANG-224 and ARIRANG-384, hence instead of near collision,
it gives collisions. The differential with corresponding active G is listed in Table 6
and the detailed picture of it can be found in Fig 4. There is no active G after
step 18, and there is no difference in the output before the final feed-forward.
Steps after 18 are not listed in Table 6.



Table 6. Active G functions in H [7] near collision characteristics for ARIRANG.

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 X W1

3 W2 W3 X

4 W4 X W5 X

5 W6 W7

6 W18 W19

7 W8 W9 X

8 W10 W11 X

9 W12 W13

10 W14 W15

11 W20 W21

12 W3 X W6

13 W9 W12 X

14 W15 X W2 X

15 W5 W8

16 W22 W23

17 W11 W14 X

18 W1 W4 X

6.2 Finding Chaining Values and Messages

The algorithm used to solve the near collision starts with setting all messages and
chaining values to be 0. To get pseudo-collisions for the complete hash function,
we need to consider the message padding and the encoding of the block length.
In ARIRANG, the message pading is performed by appending ’1’ followed by as
many zeros as necessary and the message length is encoded in the last two words.
To accommodate for this, we use 13 word long message which we can manipulate
freely and fix M13 = 10 · · ·02 and M14, M15 to contain encoded length (which
is 13 · 32 for ARIRANG-224 and 13 · 64 for ARIRANG-384). Thanks to that, the
input to the compression function is consistent with the definition of the hash
function and we still have a complete control over 13 message words M0, . . . , M12.
Now we can focus on finding a message pair that follows the differential in the
compression function and we proceed as follows.

1. Steps 1-9, whenever there is an active G, we force the input to the G to γ

((γ, γ̄) is one of good input pairs to G(256)) by modifying the immediate W

values.
2. Step 12, we modify W3. Note that W3 is also used in step 3 and 6 (W18), we

can compensate this change using the method described before.
3. Step 13, we modify W20 through W0, we also modify W2 so that W19 keeps

stable. We compensate the change of W0 and W2 again using the described
method.

4. Step 14, left active G can be dealt with using W6 and W2.
5. Step 15, right active G can be choosing a random W9, we compensate the

change of W9 used in step 7 by modifying H [6]. However the input to the



left G in step 3 changes, we compensate this using W19 in step 6, H [0] and
H [1] in step 1. Again input to left G in step 1 changes as H [0] changes,
we compensate as done for change of W7. Note W19 can only be changed
indirectly, here we use W2 and then compensate using H [6]. We repeat this
step until we find the right active G in step 14 is good. Note we can do the
compensation work only after a good value is found.

6. step 17, we modify W5 which is used in step 15. Then we compensate the
change of W5 and W18

7. Step 18, the active G is dealt with by using W4 and W0.

The only active G left is the one in step 15. We leave this to a chance by looping
over different W9. This requires 228 tries, which is equivalent to around 223

(251 for ARIRANG-384) calls to the compression function as we only need to
compute two G functions in the loop and there are 80 such computations in the
compression function. Examples shown in Table 7 can be found in few seconds
on a standard computer, and the the algorithm has no memory requirements
apart from a few words used for intermediate variables.

Table 7. Collision Example for ARIRANG-224.

input H 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 60026A7A

input H’ 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 9FFD9585

M
43F40822 00000000 22EE1F96 30B48FFB AD6E028F 958F43D5 5819FFF7 00000000

00000000 34B65233 00000000 C16DE896 00000000 80000000 00000000 000001A0

output H CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

output H’ CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

output H ⊕ H’ 00000000 00000000 00000000 00000000 00000000 00000000 00000000

6.3 Collisions for ARIRANG-384

We can find collisions for ARIRANG-384 the same way as done for ARIRANG-224.
However, the corresponding complexity of 251 is too high for a standard computer
to handle. To get over this difficulty, we can use the fact that the final transform
for ARIRANG-384 is done by discarding the last two chaining values, i.e. H [6]
and H [7]. So besides H [7]-differential, we can also consider H [6]-differential and
H [6− 7]-differential (Indeed this also gives near collisions with outputs differ in
H [6] and H [7]). It turns out that thanks to a different positions of active G-
functions, the H [6]-differential can be solved with complexity 1. Table 8 lists the
active G for this differential. Note that this differential works for all instances of
ARIRANG. So this also gives another solution for finding 224/256 near collision
for ARIRANG-256 with complexity 1.

Referring to table 8, we can solve this differential (finding chaining values
and messages) using the following procedure:

1. Step 1-9 can be handled as usual.
2. Step 13, we modify W6 in step 12. We compensate the change of W6 and

W19

3. Step 14, we modify W2 directly and then compensate the change of W2 and
W19



Table 8. Active G functions in H [6] near collision characteristics for ARIRANG.

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 W1

3 W2 X W3

4 W4 W5 X

5 W6 X W7 X

6 W18 W19

7 W8 W9

8 W10 W11 X

9 W12 W13 X

10 W14 W15

11 W20 W21

12 W3 W6

13 W9 X W12

14 W15 W2 X

15 W5 X W8 X

16 W22 W23

17 W11 W14

18 W1 W4 X

19 W7 W10 X

4. Step 15, for the left active G, we modify W5 and compensate; for the right
active G, we modify W8. Note that the change of W8 can be compensated
similarly as done for W19.

5. Step 18, we modify W4 and W0 simutaneously.

6. Step 19, we modify W1 as used in step 18 and W7 simutaneously.

As shown above, every step in the algorithm is determinstic, hence it gives
complexity close to 1. Experiments also support the result, collisions can be
found in terms of µs. An example of collision for ARIRANG-384 is shown in
Table 9, note it is also 448/512 near collision for ARIRANG-512.

Table 9. Pseudo-collision example for ARIRANG-384.

input H
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC

62372888DECEB1E5 939957A5F4B4EE05 AA31DB9CB0EF684C 49B72A01D8C86B6F

input H’
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC

62372888DECEB1E5 939957A5F4B4EE05 55CE24634F1097B3 49B72A01D8C86B6F

M

B5127D606F0860D8 3E2BD987F6626D29 4EF941810127832F 0000000000000000

B5127D606F0860D8 A8FF942B50A3F3F8 A99E61F4B41D9347 F6E3114F3EAAA5E1

AFE28E981D9AE700 0000000000000000 C80D9570708720C3 AD8760D00E4D14C8

0000000000000000 8000000000000000 0000000000000000 0000000000000340

output H
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32

F4CE359791C979E7 543F7F214A45D0A9 193A61B727F9BC5A 3E8CFA173B9D48B2

output H’
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32

F4CE359791C979E7 543F7F214A45D0A9 E6C59E48D80643A5 3E8CFA173B9D48B2



7 Conclusions

We presented a range of attacks on ARIRANG. They all use the same type of
differential based on flipping all bits in a register and the fact that all-one dif-
ferences propagate with non-zero probability through the non-linear function
G(256) and are not affected by all the other building blocks of the function.

This approach allowed us to find collisions for step-reduced compression func-
tion and pseudo-collisions for the hash function. Even though this method seems
to be effective when looking for collisions for up to around 30 steps, we do not see
a way to extend it to a collision attack on the full hash function at the moment.

A possible alternative approach would be to consider other types of differ-
ences. Note that we can get high-probability local collision patterns by having
only one S-box active inside of G(256) and cancelling the (dense) output dif-
ferences in later steps by appropriate differences in message words. With this
approach we can have up to 18 S-boxes active in the part of the function be-
yond our message-modification control to beat the birthday bound. The main
difficulty seems to find a superposition of such local patterns that agrees with
the message expansion process.

One could also think about a ways to “patch” the design to defend against our
attacks. It seems that the double feed-forward is not a good idea as it enabled us
to skip half of the steps of the function in our pseudo-collision attack. Moreover,
it should not be possible to use all-ones differences that easily. To this end,
one could either break the symmetry of rotations somewhere (perhaphs in the
message expansion process as seen in SHA-256 that uses also shifts in addition
to rotations) or modify the MDS mapping to make sure that none of the possible
output differences of the layer of S-boxes obtained for all-one input difference
maps to all-ones difference through the MDS. However, all those fixes are quite
ad-hoc and address only one particular attack strategy exploited in this paper.
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Fig. 4. Differential path in steps 1-20 used to find near-collisions in the compression
function. There are no differences in steps 21-40.


