Difference between revisions of "Skein"
Mschlaeffer (talk | contribs) m (references updated) |
Crechberger (talk | contribs) (Added results of four recent cryptanalysis papers) |
||
Line 45: | Line 45: | ||
A description of the tables is given [http://ehash.iaik.tugraz.at/wiki/Cryptanalysis_Categories#Individual_Hash_Function_Tables here]. | A description of the tables is given [http://ehash.iaik.tugraz.at/wiki/Cryptanalysis_Categories#Individual_Hash_Function_Tables here]. | ||
− | Recommended security parameter: '''72''' rounds (Skein-512) | + | Recommended security parameter: '''72''' rounds (Skein-256 and Skein-512) |
Line 56: | Line 56: | ||
| Type of Analysis || Hash Size (n) || Parameters || Compression Function Calls || Memory Requirements || Reference | | Type of Analysis || Hash Size (n) || Parameters || Compression Function Calls || Memory Requirements || Reference | ||
|- | |- | ||
− | | || || || || || | + | | collision || 256 || 2 rounds || 2<sup>85</sup> || - || [http://eprint.iacr.org/2012/141.pdf Khovratovich] |
+ | |- | ||
+ | | collision || 256 || 12 rounds || 2<sup>126.5</sup> || - || [http://eprint.iacr.org/2012/141.pdf Khovratovich] | ||
+ | |- | ||
+ | | collision || 512 || 5 rounds || 2<sup>192</sup> || - || [http://eprint.iacr.org/2012/141.pdf Khovratovich] | ||
+ | |- | ||
+ | | collision || 512 || 14 rounds || 2<sup>254.5</sup> || - || [http://eprint.iacr.org/2012/141.pdf Khovratovich] | ||
+ | |- | ||
+ | | preimage || 512 || 22 rounds || 2<sup>511.0</sup> || 2<sup>6</sup> || [http://eprint.iacr.org/2011/286.pdf Khovratovich,Rechberger,Savelieva] | ||
+ | |- | ||
+ | | preimage || 512 || 72 rounds || 2<sup>511.76</sup> || - || [http://eprint.iacr.org/2011/286.pdf Khovratovich,Rechberger,Savelieva] | ||
|- | |- | ||
|} | |} | ||
Line 70: | Line 80: | ||
|- style="background:#efefef;" | |- style="background:#efefef;" | ||
| Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | | Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | ||
+ | |- | ||
+ | | preimage || compression function || 512 || 22 rounds || 2<sup>508</sup> || 2<sup>6</sup> || [http://eprint.iacr.org/2011/286.pdf Khovratovich,Rechberger,Savelieva] | ||
+ | |- | ||
+ | | preimage || compression function || 512 || 37 rounds || 2<sup>511.2</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2011/286.pdf Khovratovich,Rechberger,Savelieva] | ||
+ | |- | ||
+ | | distinguisher || compression function || 512 || 32 rounds || 2<sup>104.5</sup> || - || [http://eprint.iacr.org/2012/238.pdf Yu,Chen,Wang] | ||
+ | |- | ||
+ | | distinguisher || compression function || 512 || 36 rounds || 2<sup>454</sup> || - || [http://eprint.iacr.org/2012/238.pdf Yu,Chen,Wang] | ||
+ | |- | ||
+ | | key recovery || block cipher || 512 || 32 rounds || 2<sup>181</sup> || - || [http://eprint.iacr.org/2012/238.pdf Yu,Chen,Wang] | ||
+ | |- | ||
+ | | key recovery || block cipher || 512 || 34 rounds || 2<sup>424</sup> || - || [http://eprint.iacr.org/2012/238.pdf Yu,Chen,Wang] | ||
+ | |- | ||
+ | | near-collision || compression function || 256 || 32 rounds || 2<sup>105</sup> || - || [http://eprint.iacr.org/2011/148.pdf Yu,Chen,Jia,Wang] | ||
|- | |- | ||
| distinguisher || compression function || all || 57 rounds (Round 2) || 2<sup>503</sup> || - || [http://eprint.iacr.org/2010/538.pdf Khovratovich,Nikolić,Rechberger] | | distinguisher || compression function || all || 57 rounds (Round 2) || 2<sup>503</sup> || - || [http://eprint.iacr.org/2010/538.pdf Khovratovich,Nikolić,Rechberger] | ||
Line 106: | Line 130: | ||
+ | |||
+ | |||
+ | <bibtex> | ||
+ | @misc{skeinK12, | ||
+ | author = {Dmitry Khovratovich}, | ||
+ | title = {Bicliques for permutations: collision and preimage attacks in stronger settings}, | ||
+ | howpublished = {Cryptology ePrint Archive, Report 2012/141}, | ||
+ | year = {2012}, | ||
+ | url = {http://eprint.iacr.org/2012/141.pdf}, | ||
+ | abstract = { We extend and improve biclique attacks, which were recently introduced for the cryptanalysis of block ciphers and hash functions. While previous attacks required a primitive to have a key or a message schedule, we show how to mount attacks on the primitives with these parameters fixed, i.e. on permutations. We introduce the concept of sliced bicliques, which is a translation of regular bicliques to the framework with permutations. | ||
+ | |||
+ | The new framework allows to convert preimage attacks into collision attacks and derive the first collision attacks on the reduced SHA-3 finalist Skein in the hash function setting up to 11 rounds. We also demonstrate new preimage attacks on the reduced Skein and the output transformation of the reduced Gr{\o}stl. Finally, the sophisticated technique of message compensation gets a simple explanation with bicliques. } | ||
+ | } | ||
+ | </bibtex> | ||
+ | <bibtex> | ||
+ | @inproceedings{skeinKRS12, | ||
+ | author = {Dmitry Khovratovich and Christian Rechberger and Alexandra Savelieva}, | ||
+ | title = {Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family}, | ||
+ | booktitle = {Fast Software Encryption (FSE)}, | ||
+ | year = {2012}, | ||
+ | publisher = {Springer}, | ||
+ | series = {LNCS}, | ||
+ | url = {http://eprint.iacr.org/2011/286.pdf}, | ||
+ | abstract = {We present the new concept of biclique as a tool for preimage attacks, which | ||
+ | employs many powerful techniques from differential cryptanalysis of block ciphers and hash | ||
+ | functions. | ||
+ | The new tool has proved to be widely applicable by inspiring many authors to publish new re- | ||
+ | sults of the full versions of AES, KASUMI, IDEA, and Square. In this paper, we demonstrate | ||
+ | how our concept results in the first cryptanalysis of the Skein hash function, and describe an | ||
+ | attack on the SHA-2 hash function with more rounds than before.} | ||
+ | } | ||
+ | </bibtex> | ||
+ | <bibtex> | ||
+ | @misc{skeinY+12, | ||
+ | author = {Hongbo Yu and Jiazhe Chen and Xiaoyun Wang}, | ||
+ | title = {The Boomerang Attacks on the Round-Reduced Skein-512}, | ||
+ | howpublished = {Cryptology ePrint Archive, Report 2012/238}, | ||
+ | year = {2012}, | ||
+ | url = {http://eprint.iacr.org/2012/238.pdf}, | ||
+ | abstract = {The hash function Skein is one of the five finalists of the NIST SHA-3 competition;it is based on the block cipher Threefish which only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). This paper studies the boomerang attacks on Skein-512. Boomerang distinguishers on the compression function reduced to 32 and 36 rounds are proposed, with complexities 2^{104.5} and 2^{454} respectively. Examples of the distinguishers on 28-round and 31-round are also given. In addition, the boomerang distinguishers are applicable to the key-recovery attacks on reduced Threefish-512. The complexities for key-recovery attacks reduced to 32-/33-/34-round are about 2^{181}, 2^{305} and 2^{424}. Because Laurent et al. [14] pointed out that the previous boomerang distinguishers for Threefish-512 are in fact not compatible, our attacks are the first valid boomerang attacks for the final round Skein-512. } | ||
+ | } | ||
+ | </bibtex> | ||
+ | <bibtex> | ||
+ | @misc{skeinY+12, | ||
+ | author = {Hongbo Yu and Jiazhe Chen and Ketingjia and Xiaoyun Wang}, | ||
+ | title = {Near-Collision Attack on the Step-Reduced Compression Function of Skein-256}, | ||
+ | howpublished = {Cryptology ePrint Archive, Report 2011/148}, | ||
+ | year = {2011}, | ||
+ | url = {http://eprint.iacr.org/2011/148.pdf}, | ||
+ | abstract = {The Hash function Skein is one of the 5 finalists of NIST SHA-3 competition. It is designed based on the threefish block cipher and it only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). In this paper, we combine two short differential paths to a long differential path using the modular differential technique. And we present the semi-free start near-collision attack up to the 32-step Skein-256 with the Hamming difference 51. The complexity of our attack is about $2^{105}$. } | ||
+ | } | ||
+ | </bibtex> | ||
<bibtex> | <bibtex> | ||
@inproceedings{skeinKNR10, | @inproceedings{skeinKNR10, | ||
Line 122: | Line 198: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
<bibtex> | <bibtex> | ||
@inproceedings{skeinSuWWD10, | @inproceedings{skeinSuWWD10, | ||
Line 169: | Line 244: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
<bibtex> | <bibtex> | ||
@inproceedings{cryptoeprint:2009:526, | @inproceedings{cryptoeprint:2009:526, | ||
Line 192: | Line 266: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
<bibtex> | <bibtex> | ||
@misc{cryptoeprint:2009:526, | @misc{cryptoeprint:2009:526, | ||
Line 203: | Line 276: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
<bibtex> | <bibtex> | ||
@inproceedings{skeinA+09, | @inproceedings{skeinA+09, | ||
Line 218: | Line 290: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
<bibtex> | <bibtex> | ||
@misc{SkeinAum09, | @misc{SkeinAum09, |
Latest revision as of 12:26, 2 October 2012
1 The algorithm
- Author(s): Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker
- Website: http://www.schneier.com/skein.html; http://skein-hash.info/
- NIST submission package:
- Round 3: Skein_FinalRnd.zip
- Round 2: Skein_Round2.zip
- Round 1: SkeinUpdate.zip (old version: Skein.zip)
Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker - The Skein Hash Function Family
- ,2010
- http://www.skein-hash.info/sites/default/files/skein1.3.pdf
BibtexAuthor : Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker
Title : The Skein Hash Function Family
In : -
Address :
Date : 2010
Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker - The Skein Hash Function Family
- ,2009
- http://www.skein-hash.info/sites/default/files/skein1.2.pdf
BibtexAuthor : Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker
Title : The Skein Hash Function Family
In : -
Address :
Date : 2009
Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker - The Skein Hash Function Family
- ,2008
- http://www.skein-hash.info/sites/default/files/skein1.1.pdf
BibtexAuthor : Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker
Title : The Skein Hash Function Family
In : -
Address :
Date : 2008
2 Cryptanalysis
We distinguish between two cases: results on the complete hash function, and results on underlying building blocks.
A description of the tables is given here.
Recommended security parameter: 72 rounds (Skein-256 and Skein-512)
2.1 Hash function
Here we list results on the hash function according to the NIST requirements. The only allowed modification is to change the security parameter.
Type of Analysis | Hash Size (n) | Parameters | Compression Function Calls | Memory Requirements | Reference |
collision | 256 | 2 rounds | 285 | - | Khovratovich |
collision | 256 | 12 rounds | 2126.5 | - | Khovratovich |
collision | 512 | 5 rounds | 2192 | - | Khovratovich |
collision | 512 | 14 rounds | 2254.5 | - | Khovratovich |
preimage | 512 | 22 rounds | 2511.0 | 26 | Khovratovich,Rechberger,Savelieva |
preimage | 512 | 72 rounds | 2511.76 | - | Khovratovich,Rechberger,Savelieva |
2.2 Building blocks
Here we list results on underlying building blocks, and the hash function modified by other means than the security parameter.
Note that these results assume more direct control or access over some internal variables (aka. free-start, pseudo, compression function, block cipher, or permutation attacks).
Type of Analysis | Hash Function Part | Hash Size (n) | Parameters/Variants | Compression Function Calls | Memory Requirements | Reference |
preimage | compression function | 512 | 22 rounds | 2508 | 26 | Khovratovich,Rechberger,Savelieva |
preimage | compression function | 512 | 37 rounds | 2511.2 | 264 | Khovratovich,Rechberger,Savelieva |
distinguisher | compression function | 512 | 32 rounds | 2104.5 | - | Yu,Chen,Wang |
distinguisher | compression function | 512 | 36 rounds | 2454 | - | Yu,Chen,Wang |
key recovery | block cipher | 512 | 32 rounds | 2181 | - | Yu,Chen,Wang |
key recovery | block cipher | 512 | 34 rounds | 2424 | - | Yu,Chen,Wang |
near-collision | compression function | 256 | 32 rounds | 2105 | - | Yu,Chen,Jia,Wang |
distinguisher | compression function | all | 57 rounds (Round 2) | 2503 | - | Khovratovich,Nikolić,Rechberger |
distinguisher | compression function | 256 | 53 rounds (Round 2) | 2251, Skein-256 | - | Khovratovich,Nikolić,Rechberger |
near-collision | compression function | all | 24 rounds (No. 20-43) | 2230 | - | Su,Wu,Wu,Dong |
near-collision | compression function | 256 | 24 rounds (No. 12-35), Skein-256 | 260 | - | Su,Wu,Wu,Dong |
near-collision | compression function | all | 24 rounds, Skein-1024 | 2395 | - | Su,Wu,Wu,Dong |
observations | hash | all | Gligoroski | |||
observations | block cipher | all | - | - | - | McKay,Vora |
observations | compression function | all | - | - | - | Kaminsky |
key recovery | block cipher | 256 | 39 rounds | 2254.1 | - | Khovratovich,Nikolic |
key recovery | block cipher | 512 | 42 rounds | 2507 | - | Khovratovich,Nikolic |
key recovery | block cipher | 512 | 32 rounds (Round 1) | 2226 (2222) | 212 | Chen,Jia |
key recovery | block cipher | 512 | 33 rounds (Round 1) | 2352.17 (2355.5) | - | Chen,Jia |
near collision | compression function | 512 | 17 rounds (Round 1) | 224 | - | Aumasson,Calik,Meier,Ozen,Phan,Varici |
distinguisher | block cipher | 512 | 35 rounds (Round 1) | 2478 | - | Aumasson,Calik,Meier,Ozen,Phan,Varici |
impossible differential | block cipher | 512 | 21 rounds (Round 1) | - | - | Aumasson,Calik,Meier,Ozen,Phan,Varici |
key recovery | block cipher | 512 | 32 rounds (Round 1) | 2312 | - | Aumasson,Calik,Meier,Ozen,Phan,Varici |
Dmitry Khovratovich - Bicliques for permutations: collision and preimage attacks in stronger settings
- ,2012
- http://eprint.iacr.org/2012/141.pdf
BibtexAuthor : Dmitry Khovratovich
Title : Bicliques for permutations: collision and preimage attacks in stronger settings
In : -
Address :
Date : 2012
Dmitry Khovratovich, Christian Rechberger, Alexandra Savelieva - Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family
- Fast Software Encryption (FSE) ,2012
- http://eprint.iacr.org/2011/286.pdf
BibtexAuthor : Dmitry Khovratovich, Christian Rechberger, Alexandra Savelieva
Title : Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family
In : Fast Software Encryption (FSE) -
Address :
Date : 2012
Hongbo Yu, Jiazhe Chen, Xiaoyun Wang - The Boomerang Attacks on the Round-Reduced Skein-512
- ,2012
- http://eprint.iacr.org/2012/238.pdf
BibtexAuthor : Hongbo Yu, Jiazhe Chen, Xiaoyun Wang
Title : The Boomerang Attacks on the Round-Reduced Skein-512
In : -
Address :
Date : 2012
Hongbo Yu, Jiazhe Chen, Ketingjia, Xiaoyun Wang - Near-Collision Attack on the Step-Reduced Compression Function of Skein-256
- ,2011
- http://eprint.iacr.org/2011/148.pdf
BibtexAuthor : Hongbo Yu, Jiazhe Chen, Ketingjia, Xiaoyun Wang
Title : Near-Collision Attack on the Step-Reduced Compression Function of Skein-256
In : -
Address :
Date : 2011
Dmitry Khovratovich, Ivica Nikolić, Christian Rechberger - Rotational Rebound Attacks on Reduced Skein
- ASIACRYPT 6477:1-19,2010
- http://eprint.iacr.org/2010/538.pdf
BibtexAuthor : Dmitry Khovratovich, Ivica Nikolić, Christian Rechberger
Title : Rotational Rebound Attacks on Reduced Skein
In : ASIACRYPT -
Address :
Date : 2010
Bozhan Su, Wenling Wu, Shuang Wu, Le Dong - Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE
- CANS 6467:124-139,2010
- http://eprint.iacr.org/2010/355.pdf
BibtexAuthor : Bozhan Su, Wenling Wu, Shuang Wu, Le Dong
Title : Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE
In : CANS -
Address :
Date : 2010
Danilo Gligoroski - Narrow-pipe SHA-3 candidates differ significantly from ideal random functions defined over big domains
- ,2010
- http://people.item.ntnu.no/~danilog/Hash/Non-random-behaviour-narrow-pipe-designs-03.pdf
BibtexAuthor : Danilo Gligoroski
Title : Narrow-pipe SHA-3 candidates differ significantly from ideal random functions defined over big domains
In : -
Address :
Date : 2010
Kerry A. McKay, Poorvi L. Vora - Pseudo-Linear Approximations for ARX Ciphers: With Application to Threefish
- ,2010
- http://eprint.iacr.org/2010/282.pdf
BibtexAuthor : Kerry A. McKay, Poorvi L. Vora
Title : Pseudo-Linear Approximations for ARX Ciphers: With Application to Threefish
In : -
Address :
Date : 2010
Alan Kaminsky - Cube Test Analysis of the Statistical Behavior of CubeHash and Skein
- ,2010
- http://eprint.iacr.org/2010/262.pdf
BibtexAuthor : Alan Kaminsky
Title : Cube Test Analysis of the Statistical Behavior of CubeHash and Skein
In : -
Address :
Date : 2010
Dmitry Khovratovich, Ivica Nikolic - Rotational Cryptanalysis of ARX
- FSE 6147:333-346
- http://cryptolux.org/mediawiki/uploads/5/5b/Rotational_Cryptanalysis_of_Skein.pdf
BibtexAuthor : Dmitry Khovratovich, Ivica Nikolic
Title : Rotational Cryptanalysis of ARX
In : FSE -
Address :
Date :
Jiazhe Chen, Keting Jia - Improved Related-key Boomerang Attacks on Round-Reduced Threefish-512
- ,2009
- http://eprint.iacr.org/2009/526.pdf
BibtexAuthor : Jiazhe Chen, Keting Jia
Title : Improved Related-key Boomerang Attacks on Round-Reduced Threefish-512
In : -
Address :
Date : 2009
Jean-Philippe Aumasson, Cagdas Calik, Willi Meier, Onur Ozen, Raphael C.-W. Phan, Kerem Varici - Improved Cryptanalysis of Skein
- ASIACRYPT 5912:542-559,2009
- http://eprint.iacr.org/2009/438.pdf
BibtexAuthor : Jean-Philippe Aumasson, Cagdas Calik, Willi Meier, Onur Ozen, Raphael C.-W. Phan, Kerem Varici
Title : Improved Cryptanalysis of Skein
In : ASIACRYPT -
Address :
Date : 2009
Jean-Philippe Aumasson, Willi Meier, Raphael Phan - Improved analyis of Threefish