Difference between revisions of "Keccak"
Mschlaeffer (talk | contribs) m |
(tables & refs sorted) |
||
Line 79: | Line 79: | ||
|- style="background:#efefef;" | |- style="background:#efefef;" | ||
| Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | | Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | ||
− | |||
− | |||
|- | |- | ||
− | | | + | | distinguisher<sup>(1)</sup> || permutation || all || 18 rounds || 2<sup>1370</sup> || || [http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf Boura,Canteaut] |
|- | |- | ||
| distinguisher<sup>(1)</sup> || permutation || all || 16 rounds || 2<sup>1023.88</sup> || || [http://www.131002.net/data/papers/AM09.pdf Aumasson,Meier] | | distinguisher<sup>(1)</sup> || permutation || all || 16 rounds || 2<sup>1023.88</sup> || || [http://www.131002.net/data/papers/AM09.pdf Aumasson,Meier] | ||
|- | |- | ||
− | | | + | | key recovery || secret-prefix MAC || 224 || 4 rounds || 2<sup>19</sup> || ? || [http://www.cs.rit.edu/~jal6806/thesis/thesis.pdf Joel,Lathrop] |
+ | |- | ||
+ | | observations || permutation || all || || || || [http://131002.net/data/papers/AK09.pdf Aumasson,Khovratovich] | ||
|- | |- | ||
|} | |} | ||
<sup>(1)</sup>The Keccak team commented on these distinguishers and provide generic constructions in [http://keccak.noekeon.org/NoteZeroSum.pdf this note]. | <sup>(1)</sup>The Keccak team commented on these distinguishers and provide generic constructions in [http://keccak.noekeon.org/NoteZeroSum.pdf this note]. | ||
− | |||
<bibtex> | <bibtex> | ||
− | @misc{ | + | @misc{KeccakNoteZeroSum, |
− | + | author = {G. Bertoni and J. Daemen and M. Peeters and G. Van Assche}, | |
− | + | title = {Note on zero-sum distinguishers of Keccak-f}, | |
− | + | url = {http://keccak.noekeon.org/NoteZeroSum.pdf}, | |
− | + | howpublished = {NIST mailing list}, | |
− | + | year = {2010}, | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</bibtex> | </bibtex> | ||
Line 151: | Line 125: | ||
<bibtex> | <bibtex> | ||
− | @misc{ | + | @misc{keccakAM09, |
− | author = { | + | author = {Jean-Philippe Aumasson and Willi Meier}, |
− | title = { | + | title = {Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi}, |
− | url = {http:// | + | url = {http://www.131002.net/data/papers/AM09.pdf}, |
− | howpublished = { | + | howpublished = {NIST mailing list} |
− | year = { | + | year = {2009}, |
+ | abstract = {We present a new type of distinguisher, called zero-sum distinguisher, and apply it to reduced versions of the Keccak-f permutation. We obtain practical and deterministic distinguishers on up to 9 rounds, and shortcut distinguishers on up to 16 rounds, out of 18 in total. These observations do not seem to affect the security of Keccak. We also briefly describe application of zero-sum distinguishers to the core permutations of Luffa and Hamsi.}, | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{keccakAK09, | ||
+ | author = {Joel Lathrop}, | ||
+ | title = {Cube Attacks on Cryptographic Hash Functions}, | ||
+ | url = {http://www.cs.rit.edu/~jal6806/thesis/thesis.pdf}, | ||
+ | howpublished = {Available online}, | ||
+ | year = {2009}, | ||
+ | abstract = {The thesis includes a successful cube attack against 4-round Keccak complete with a table of maxterms, analysis of the attack, and the estimated limits of its extension to higher numbers of rounds.}, | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{keccakAK09, | ||
+ | author = {Jean-Philippe Aumasson and Dmitry Khovratovich}, | ||
+ | title = {First Analysis of Keccak}, | ||
+ | url = {http://131002.net/data/papers/AK09.pdf}, | ||
+ | howpublished = {Available online}, | ||
+ | year = {2009}, | ||
+ | abstract = {We apply known automated cryptanalytic tools to the Keccak-f[1600] permutation, using | ||
+ | a triangulation tool to solve the CICO problem, and cube testers to detect some structure in the | ||
+ | algebraic description of the reduced Keccak-f[1600]. The applicability of our tools was notably limited | ||
+ | by the strength of the inverse permutation.}, | ||
} | } | ||
</bibtex> | </bibtex> |
Revision as of 11:06, 15 February 2010
1 The algorithm
- Author(s): Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
- Website: http://keccak.noekeon.org/
- NIST submission package:
- round 1: Keccak.zip
- round 2: Keccak_Round2.zip
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Keccak specifications
- ,2009
- http://keccak.noekeon.org/Keccak-specifications-2.pdf
BibtexAuthor : G. Bertoni, J. Daemen, M. Peeters, G. Van Assche
Title : Keccak specifications
In : -
Address :
Date : 2009
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Keccak sponge function family main document
- ,2009
- http://keccak.noekeon.org/Keccak-main-2.0.pdf
BibtexAuthor : G. Bertoni, J. Daemen, M. Peeters, G. Van Assche
Title : Keccak sponge function family main document
In : -
Address :
Date : 2009
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Keccak specifications
- ,2008
- http://keccak.noekeon.org/Keccak-specifications.pdf
BibtexAuthor : G. Bertoni, J. Daemen, M. Peeters, G. Van Assche
Title : Keccak specifications
In : -
Address :
Date : 2008
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Keccak sponge function family main document
- ,2008
- http://keccak.noekeon.org/Keccak-main-1.0.pdf
BibtexAuthor : G. Bertoni, J. Daemen, M. Peeters, G. Van Assche
Title : Keccak sponge function family main document
In : -
Address :
Date : 2008
2 Cryptanalysis
We distinguish between two cases: results on the complete hash function, and results on underlying building blocks.
A description of the tables is given here.
2.1 Hash function
Here we list results on the actual hash function. The only allowed modification is to change the security parameter.
Recommended security parameter: 24 rounds (Keccak-f [1600])
Type of Analysis | Hash Size (n) | Parameters | Compression Function Calls | Memory Requirements | Reference |
2.2 Building blocks
Here we list results on underlying building blocks, and the hash function modified by other means than the security parameter.
Note that these results assume more direct control or access over some internal variables (aka. free-start, pseudo, compression function, block cipher, or permutation attacks).
Type of Analysis | Hash Function Part | Hash Size (n) | Parameters/Variants | Compression Function Calls | Memory Requirements | Reference |
distinguisher(1) | permutation | all | 18 rounds | 21370 | Boura,Canteaut | |
distinguisher(1) | permutation | all | 16 rounds | 21023.88 | Aumasson,Meier | |
key recovery | secret-prefix MAC | 224 | 4 rounds | 219 | ? | Joel,Lathrop |
observations | permutation | all | Aumasson,Khovratovich |
(1)The Keccak team commented on these distinguishers and provide generic constructions in this note.
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Note on zero-sum distinguishers of Keccak-f
- ,2010
- http://keccak.noekeon.org/NoteZeroSum.pdf
BibtexAuthor : G. Bertoni, J. Daemen, M. Peeters, G. Van Assche
Title : Note on zero-sum distinguishers of Keccak-f
In : -
Address :
Date : 2010
Christina Boura, Anne Canteaut - A Zero-Sum property for the Keccak-f Permutation with 18 Rounds
- ,2010
- http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
BibtexAuthor : Christina Boura, Anne Canteaut
Title : A Zero-Sum property for the Keccak-f Permutation with 18 Rounds
In : -
Address :
Date : 2010
Jean-Philippe Aumasson, Willi Meier - Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi
- ,2009
- http://www.131002.net/data/papers/AM09.pdf
BibtexAuthor : Jean-Philippe Aumasson, Willi Meier
Title : Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi
In : -
Address :
Date : 2009
Joel Lathrop - Cube Attacks on Cryptographic Hash Functions
- ,2009
- http://www.cs.rit.edu/~jal6806/thesis/thesis.pdf
BibtexAuthor : Joel Lathrop
Title : Cube Attacks on Cryptographic Hash Functions
In : -
Address :
Date : 2009
Jean-Philippe Aumasson, Dmitry Khovratovich - First Analysis of Keccak