Difference between revisions of "Groestl"
(added Sasaki et al) |
|||
Line 71: | Line 71: | ||
|- | |- | ||
| distinguisher || compression function || 512 || 11 rounds || 2<sup>630</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] | | distinguisher || compression function || 512 || 11 rounds || 2<sup>630</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] | ||
+ | |- | ||
+ | | distinguisher || permutation || 256 || 8 rounds || 2<sup>48</sup> || 2<sup>8</sup> || [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf Sasaki,Li,Wang,Sakiyama,Ohta] | ||
+ | |- | ||
+ | | semi-free-start collision || compression function || 512 || 7 rounds || 2<sup>152</sup> || 2<sup>56</sup> || [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf Sasaki,Li,Wang,Sakiyama,Ohta] | ||
|- | |- | ||
| semi-free-start collision || compression function || 224,256 || 7 rounds || 2<sup>80</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | | semi-free-start collision || compression function || 224,256 || 7 rounds || 2<sup>80</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | ||
Line 116: | Line 120: | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 186: | Line 131: | ||
url = {http://eprint.iacr.org/2010/607.pdf}, | url = {http://eprint.iacr.org/2010/607.pdf}, | ||
abstract = {Rebound attacks are a state-of-the-art analysis method for hash functions. These cryptanalysis methods are based on a well chosen differential path and have been applied to several hash functions from the SHA-3 competition, providing the best known analysis in these cases. In this paper we study rebound attacks in detail and find for a great number of cases, that complexities of existing attacks can be improved. This is done by determining problems that adapt optimally to the cryptanalytic situation, and by using better algorithms to follow the differential path. These improvements are essentially based on merging big lists in a more efficient way, as well as on new ideas on how to reduce the complexities. As a result, we introduce general purpose new algorithms for enabling further rebound analysis to be as performant as possible. We illustrate our new algorithms for real hash functions and demonstrate how to reduce the complexities of the best known analysis on five hash functions: JH, Grøstl, ECHO, Luffa and Lane (the first four are round two SHA-3 candidates).}, | abstract = {Rebound attacks are a state-of-the-art analysis method for hash functions. These cryptanalysis methods are based on a well chosen differential path and have been applied to several hash functions from the SHA-3 competition, providing the best known analysis in these cases. In this paper we study rebound attacks in detail and find for a great number of cases, that complexities of existing attacks can be improved. This is done by determining problems that adapt optimally to the cryptanalytic situation, and by using better algorithms to follow the differential path. These improvements are essentially based on merging big lists in a more efficient way, as well as on new ideas on how to reduce the complexities. As a result, we introduce general purpose new algorithms for enabling further rebound analysis to be as performant as possible. We illustrate our new algorithms for real hash functions and demonstrate how to reduce the complexities of the best known analysis on five hash functions: JH, Grøstl, ECHO, Luffa and Lane (the first four are round two SHA-3 candidates).}, | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{groestlechoSLWSO10, | ||
+ | author = {Yu Sasaki and Yang Li and Lei Wang and Kazuo Sakiyama and Kazuo Ohta}, | ||
+ | title = {New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl | ||
+ | }, | ||
+ | howpublished = {Second SHA-3 Candidate Conference}, | ||
+ | year = {2010}, | ||
+ | url = {http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf}, | ||
+ | abstract = {In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal | ||
+ | properties of a class of AES-based permutations with a low complexity. We apply this framework | ||
+ | to SHA-3 round-2 candidates ECHO and Grøstl. The first application is for the full-round (8-round) | ||
+ | ECHO permutation, which is a building block for 256-bit and 224-bit output sizes. By combining several | ||
+ | observations specific to ECHO, our attack detects a non-ideal property with a time complexity of 2^182 | ||
+ | and 2^37 amount of memory. The complexity, especially in terms of the product of time and memory, | ||
+ | is drastically reduced from the previous best attack which required 2^512 x 2^512. To the best of our knowledge, this is the first result on the full-round ECHO permutation with both time and memory below 2^256 or 2^224. Note that this result does not impact the security of the ECHO compression function nor the overall hash function. We also show that our method can detect non-ideal properties of the 8-round Grøstl-256 permutation with a practical complexity, and finally show that our approach leads | ||
+ | to an improvement on a semi-free-start collision attack on the 7-round Grøstl-512 compression function. | ||
+ | Our approach is based on a series of attacks on AES-based hash functions such as rebound attack and | ||
+ | Super-Sbox analysis. The core idea is using a new differential path consisting of only non-full-active | ||
+ | states.} | ||
} | } | ||
</bibtex> | </bibtex> |
Revision as of 14:39, 8 December 2010
1 The algorithm
- Author(s): Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
- Website: http://www.groestl.info
- NIST submission package:
- round 1/2: Grostl_Round2.zip (old version: Grostl.zip)
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Grøstl -- a SHA-3 candidate
- ,2008
- http://www.groestl.info/Groestl.pdf
BibtexAuthor : Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Grøstl -- a SHA-3 candidate
In : -
Address :
Date : 2008
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Grøstl Addendum
- ,2009
- http://groestl.info/Groestl-addendum.pdf
BibtexAuthor : Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Grøstl Addendum
In : -
Address :
Date : 2009
2 Cryptanalysis
We distinguish between two cases: results on the complete hash function, and results on underlying building blocks.
A description of the tables is given here.
Recommended security parameter: 10 rounds (n=224,256); 14 rounds (n=384,512)
2.1 Hash function
Here we list results on the hash function according to the NIST requirements. The only allowed modification is to change the security parameter.
Type of Analysis | Hash Size (n) | Parameters | Compression Function Calls | Memory Requirements | Reference |
collision | 224,256 | 5 rounds | 248 | 232 | Ideguchi,Tischhauser,Preneel |
collision | 256 | 6 rounds | 2112 | 232 | Ideguchi,Tischhauser,Preneel |
collision | 224,256 | 4 rounds | 264 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
collision | 224,256 | 3 rounds | 264 | - | Mendel,Rechberger,Schläffer,Thomsen |
collision | 384,512 | 5 rounds | 2176 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
collision | 384,512 | 4 rounds | 264 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
2.2 Building blocks
Here we list results on underlying building blocks, and the hash function modified by other means than the security parameter.
Note that these results assume more direct control or access over some internal variables (aka. free-start, pseudo, compression function, block cipher, or permutation attacks).
Type of Analysis | Hash Function Part | Hash Size (n) | Parameters/Variants | Compression Function Calls | Memory Requirements | Reference |
distinguisher | compression function | 256 | 10 rounds | 2175 | 264 | Naya-Plasencia |
distinguisher | compression function | 512 | 11 rounds | 2630 | 264 | Naya-Plasencia |
distinguisher | permutation | 256 | 8 rounds | 248 | 28 | Sasaki,Li,Wang,Sakiyama,Ohta |
semi-free-start collision | compression function | 512 | 7 rounds | 2152 | 256 | Sasaki,Li,Wang,Sakiyama,Ohta |
semi-free-start collision | compression function | 224,256 | 7 rounds | 280 | 232 | Ideguchi,Tischhauser,Preneel |
semi-free-start collision | compression function | 224,256 | 8 rounds | 2192 | 264 | Ideguchi,Tischhauser,Preneel |
distinguisher | permutation | 224,256 | 7 rounds | 219 | - | Ideguchi,Tischhauser,Preneel |
distinguisher | permutation | 224,256 | 8 rounds | 264 | 264 | Ideguchi,Tischhauser,Preneel |
distinguisher | compression function | 256 | 10 rounds | 2192 | 264 | Peyrin |
distinguisher | compression function | 256 | 9 rounds | 280 | 264 | Peyrin |
distinguisher | compression function | 512 | 11 rounds | 2640 | 264 | Peyrin |
semi-free-start collision | compression function | 256 | 7 rounds | 2120 | 264 | Gilbert,Peyrin |
distinguisher | compression function | 256 | 8 rounds | 2112 | 264 | Gilbert,Peyrin |
distinguisher | permutation | 256 | 8 rounds | 2112 | 264 | Gilbert,Peyrin |
semi-free-start collision | compression function | 256 | 7 rounds | 2120 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 384,512 | 7 rounds | 2152 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 224,256 | 6 rounds | 264 | 264 | Mendel,Peyrin,Rechberger,Schläffer |
distinguisher | output transformation | 224,256 | 7 rounds | 256 | - | Mendel,Peyrin,Rechberger,Schläffer |
distinguisher | permutation | 224,256 | 7 rounds | 255 | - | Mendel,Peyrin,Rechberger,Schläffer |
semi-free-start collision | compression function | 256 | 6 rounds | 2120 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 224,256 | 5 rounds | 264 | - | Mendel,Rechberger,Schläffer,Thomsen |
observation | hash | all | Kelsey | |||
observation | block cipher | all | Barreto | |||
free-start collision | compression function | all | any | 22n/3 | 22n/3 | submission document |
pseudo-preimage | compression function | all | any | 2n | - | submission document |
María Naya-Plasencia - Scrutinizing rebound attacks: new algorithms for improving the complexities
- ,2010
- http://eprint.iacr.org/2010/607.pdf
BibtexAuthor : María Naya-Plasencia
Title : Scrutinizing rebound attacks: new algorithms for improving the complexities
In : -
Address :
Date : 2010
Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, Kazuo Ohta - New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl
- ,2010
- http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf
BibtexAuthor : Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, Kazuo Ohta
Title : New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl
In : -
Address :
Date : 2010
Kota Ideguchi, Elmar Tischhauser, Bart Preneel - Improved Collision Attacks on the Reduced-Round Grøstl Hash Function
- ,2010
- http://eprint.iacr.org/2010/375.pdf
BibtexAuthor : Kota Ideguchi, Elmar Tischhauser, Bart Preneel
Title : Improved Collision Attacks on the Reduced-Round Grøstl Hash Function
In : -
Address :
Date : 2010
Thomas Peyrin - Improved Differential Attacks for ECHO and Grostl
- ,2010
- http://eprint.iacr.org/2010/223.pdf
BibtexAuthor : Thomas Peyrin
Title : Improved Differential Attacks for ECHO and Grostl
In : -
Address :
Date : 2010
Henri Gilbert, Thomas Peyrin - Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations
- FSE ,2010
- http://eprint.iacr.org/2009/531.pdf
BibtexAuthor : Henri Gilbert, Thomas Peyrin
Title : Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations
In : FSE -
Address :
Date : 2010
Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Rebound Attacks on the Reduced Grøstl Hash Function
- CT-RSA 5985:350-365,2010
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053
BibtexAuthor : Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Rebound Attacks on the Reduced Grøstl Hash Function
In : CT-RSA -
Address :
Date : 2010
Florian Mendel, Thomas Peyrin, Christian Rechberger, Martin Schläffer - Improved Cryptanalysis of the Reduced Grøstl
Compression Function, ECHO Permutation and AES Block Cipher
- SAC 5867:16-35,2009
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420
BibtexAuthor : Florian Mendel, Thomas Peyrin, ChristianRechberger, Martin Schläffer
Compression Function, ECHO Permutation and AES Block Cipher
Title : Improved Cryptanalysis of the Reduced Grøstl
In : SAC -
Address :
Date : 2009
Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl
- FSE 5665:260-276,2009
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943
BibtexAuthor : Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl
In : FSE -
Address :
Date : 2009
John Kelsey - Some notes on Grøstl
- ,2009
- http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf
BibtexAuthor : John Kelsey
Title : Some notes on Grøstl
In : -
Address :
Date : 2009
Paulo S. L. M. Barreto - An observation on Grøstl