Difference between revisions of "Groestl"
Mschlaeffer (talk | contribs) m |
m |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
* Website: [http://www.groestl.info http://www.groestl.info] | * Website: [http://www.groestl.info http://www.groestl.info] | ||
* NIST submission package: | * NIST submission package: | ||
− | ** | + | ** Round 3: [http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Groestl_FinalRnd.zip Groestl_FinalRnd.zip] |
− | ** | + | ** Round 1/2: [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Grostl_Round2.zip Grostl_Round2.zip] (old version: [http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Grostl.zip Grostl.zip]) |
Line 23: | Line 23: | ||
title = {Grøstl Addendum}, | title = {Grøstl Addendum}, | ||
url = {http://groestl.info/Groestl-addendum.pdf}, | url = {http://groestl.info/Groestl-addendum.pdf}, | ||
− | howpublished = { | + | howpublished = {Submission to NIST (Round 2)}, |
year = {2009}, | year = {2009}, | ||
} | } | ||
Line 37: | Line 37: | ||
} | } | ||
</bibtex> | </bibtex> | ||
− | |||
== Cryptanalysis == | == Cryptanalysis == | ||
Line 73: | Line 72: | ||
| Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | | Type of Analysis || Hash Function Part || Hash Size (n) || Parameters/Variants || Compression Function Calls || Memory Requirements || Reference | ||
|- | |- | ||
− | | semi-free-start collision || compression function || 256 || 6 rounds || 2<sup> | + | | distinguisher || permutation || 256 || 9 rounds || 2<sup>368</sup> || 2<sup>64</sup> || [http://link.springer.com/chapter/10.1007%2F978-3-642-34047-5_7 Jean,Naya-Plasencia,Peyrin] |
+ | |- | ||
+ | | distinguisher || permutation || 512 || 8 rounds || 2<sup>280</sup> || 2<sup>64</sup> || [http://link.springer.com/chapter/10.1007%2F978-3-642-34047-5_7 Jean,Naya-Plasencia,Peyrin] | ||
+ | |- | ||
+ | | distinguisher || permutation || 512 || 9 rounds || 2<sup>328</sup> || 2<sup>64</sup> || [http://link.springer.com/chapter/10.1007%2F978-3-642-34047-5_7 Jean,Naya-Plasencia,Peyrin] | ||
+ | |- | ||
+ | | distinguisher || permutation || 512 || 10 rounds || 2<sup>392</sup> || 2<sup>64</sup> || [http://link.springer.com/chapter/10.1007%2F978-3-642-34047-5_7 Jean,Naya-Plasencia,Peyrin] | ||
+ | |- | ||
+ | | preimage|| output transformation || 256 || 5 rounds || 2<sup>206</sup> || 2<sup>48</sup> || [http://eprint.iacr.org/2012/206.pdf Wu,Feng,Wu,Guo,Dong,Zou] | ||
+ | |- | ||
+ | | pseudo preimage|| hash function || 256 || 5 rounds || 2<sup>244.85</sup> || 2<sup>230.13</sup> || [http://eprint.iacr.org/2012/206.pdf Wu,Feng,Wu,Guo,Dong,Zou] | ||
+ | |- | ||
+ | | preimage|| output transformation || 512 || 8 rounds || 2<sup>495</sup> || 2<sup>16</sup> || [http://eprint.iacr.org/2012/206.pdf Wu,Feng,Wu,Guo,Dong,Zou] | ||
+ | |- | ||
+ | | pseudo preimage|| hash function || 512 || 8 rounds || 2<sup>507.32</sup> || 2<sup>507</sup> || [http://eprint.iacr.org/2012/206.pdf Wu,Feng,Wu,Guo,Dong,Zou] | ||
+ | |- | ||
+ | | preimage || output transformation || 256 || 6 rounds || 2<sup>251</sup> || || [http://eprint.iacr.org/2012/141.pdf Khovratovich] | ||
+ | |- | ||
+ | | preimage || compression function || 256 || 6 rounds || 2<sup>128</sup> || || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 6 rounds / 2<sup>64</sup> targets || 2<sup>64</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 6 rounds / 2<sup>8</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 7 rounds / 2<sup>80</sup> targets || 2<sup>64</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 7 rounds / 2<sup>24</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 8 rounds / 2<sup>192</sup> targets || 2<sup>64</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 8 rounds / 2<sup>136</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || compression function || 256 || 9 rounds / 2<sup>192</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 5 rounds / 2<sup>64</sup> targets || 2<sup>80</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 6 rounds / 2<sup>16</sup> targets || 2<sup>136</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 6 rounds / 2<sup>64</sup> targets || 2<sup>64</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 6 rounds / 2<sup>8</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 7 rounds / 2<sup>80</sup> targets || 2<sup>64</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | chosen multitarget preimage || hash function || 256 || 7 rounds / 2<sup>24</sup> targets || 2<sup>120</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | preimage || hash function || 256 || 5 rounds || 2<sup>144</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | preimage || hash function || 256 || 6 rounds || 2<sup>144</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | pseudo preimage || hash function || 256 || 6 rounds || 2<sup>128</sup> || 2<sup>64</sup> || [http://web.science.mq.edu.au/~rons/preimageattack-final.pdf Emami,Guaravaram,Pieprzyk,Steinfeld] | ||
+ | |- | ||
+ | | distinguisher || permutation || 256 || 10 rounds || 2<sup>509</sup> || || [http://fse2011.mat.dtu.dk/slides/Higher-order%20differential%20properties%20of%20Keccak%20and%20Luffa.pdf Boura,Canteaut,DeCannière] | ||
+ | |- | ||
+ | | semi-free-start collision || compression function || 256 || 6 rounds || 2<sup>120</sup> || 2<sup>64</sup> || [http://groestl.info/groestl-analysis.pdf Schläffer] | ||
|- | |- | ||
| semi-free-start collision || compression function || 384,512 || 6 rounds || 2<sup>180</sup> || 2<sup>64</sup> || [http://groestl.info/groestl-analysis.pdf Schläffer] | | semi-free-start collision || compression function || 384,512 || 6 rounds || 2<sup>180</sup> || 2<sup>64</sup> || [http://groestl.info/groestl-analysis.pdf Schläffer] | ||
|- | |- | ||
− | | collision || hash function || 224,256 || 5 rounds (Round 1) || 2<sup>48</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | + | | collision || hash function || 224,256 || 5 rounds (Round 1/2) || 2<sup>48</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] |
|- | |- | ||
− | | collision || hash function || 256 || 6 rounds (Round 1) || 2<sup>112</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | + | | collision || hash function || 256 || 6 rounds (Round 1/2) || 2<sup>112</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] |
|- | |- | ||
− | | collision || hash function || 224,256 || 4 rounds (Round 1) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | collision || hash function || 224,256 || 4 rounds (Round 1/2) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | collision || hash function || 224,256 || 3 rounds (Round 1) || 2<sup>64</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | collision || hash function || 224,256 || 3 rounds (Round 1/2) || 2<sup>64</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | collision || hash function || 384,512 || 5 rounds (Round 1) || 2<sup>176</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | collision || hash function || 384,512 || 5 rounds (Round 1/2) || 2<sup>176</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | collision || hash function || 384,512 || 4 rounds (Round 1) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | collision || hash function || 384,512 || 4 rounds (Round 1/2) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | distinguisher || compression function || 256 || 10 rounds (Round 1) || 2<sup>175</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] | + | | distinguisher || compression function || 256 || 10 rounds (Round 1/2) || 2<sup>175</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] |
|- | |- | ||
− | | distinguisher || compression function || 512 || 11 rounds (Round 1) || 2<sup>630</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] | + | | distinguisher || compression function || 512 || 11 rounds (Round 1/2) || 2<sup>630</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/607.pdf Naya-Plasencia] |
|- | |- | ||
| distinguisher || permutation || 256 || 8 rounds || 2<sup>48</sup> || 2<sup>8</sup> || [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf Sasaki,Li,Wang,Sakiyama,Ohta] | | distinguisher || permutation || 256 || 8 rounds || 2<sup>48</sup> || 2<sup>8</sup> || [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf Sasaki,Li,Wang,Sakiyama,Ohta] | ||
|- | |- | ||
− | | semi-free-start collision || compression function || 512 || 7 rounds | + | | semi-free-start collision || compression function || 512 || 7 rounds || 2<sup>152</sup> || 2<sup>56</sup> || [http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf Sasaki,Li,Wang,Sakiyama,Ohta] |
|- | |- | ||
− | | semi-free-start collision || compression function || 224,256 || 7 rounds (Round 1) || 2<sup>80</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | + | | semi-free-start collision || compression function || 224,256 || 7 rounds (Round 1/2) || 2<sup>80</sup> || 2<sup>32</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] |
|- | |- | ||
− | | semi-free-start collision || compression function || 224,256 || 8 rounds (Round 1) || 2<sup>192</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | + | | semi-free-start collision || compression function || 224,256 || 8 rounds (Round 1/2) || 2<sup>192</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] |
|- | |- | ||
| distinguisher || permutation || 224,256 || 7 rounds || 2<sup>19</sup> || - || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | | distinguisher || permutation || 224,256 || 7 rounds || 2<sup>19</sup> || - || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | ||
Line 105: | Line 158: | ||
| distinguisher || permutation || 224,256 || 8 rounds || 2<sup>64</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | | distinguisher || permutation || 224,256 || 8 rounds || 2<sup>64</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/375.pdf Ideguchi,Tischhauser,Preneel] | ||
|- | |- | ||
− | | distinguisher || compression function || 256 || 10 rounds (Round 1) || 2<sup>192</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] | + | | distinguisher || compression function || 256 || 10 rounds (Round 1/2) || 2<sup>192</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] |
|- | |- | ||
− | | distinguisher || compression function || 256 || 9 rounds (Round 1) || 2<sup>80</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] | + | | distinguisher || compression function || 256 || 9 rounds (Round 1/2) || 2<sup>80</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] |
|- | |- | ||
− | | distinguisher || compression function || 512 || 11 rounds (Round 1) || 2<sup>640</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] | + | | distinguisher || compression function || 512 || 11 rounds (Round 1/2) || 2<sup>640</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2010/223.pdf Peyrin] |
|- | |- | ||
− | | semi-free-start collision || compression function || 256 || 7 rounds (Round 1) || 2<sup>120</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] | + | | semi-free-start collision || compression function || 256 || 7 rounds (Round 1/2) || 2<sup>120</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] |
|- | |- | ||
− | | distinguisher || compression function || 256 || 8 rounds (Round 1) || 2<sup>112</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] | + | | distinguisher || compression function || 256 || 8 rounds (Round 1/2) || 2<sup>112</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] |
|- | |- | ||
| distinguisher || permutation || 256 || 8 rounds || 2<sup>112</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] | | distinguisher || permutation || 256 || 8 rounds || 2<sup>112</sup> || 2<sup>64</sup> || [http://eprint.iacr.org/2009/531.pdf Gilbert,Peyrin] | ||
|- | |- | ||
− | | semi-free-start collision || compression function || 256 || 7 rounds (Round 1) || 2<sup>120</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | semi-free-start collision || compression function || 256 || 7 rounds (Round 1/2) || 2<sup>120</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | semi-free-start collision || compression function|| 384,512 || 7 rounds (Round 1) || 2<sup>152</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] | + | | semi-free-start collision || compression function|| 384,512 || 7 rounds (Round 1/2) || 2<sup>152</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | semi-free-start collision || compression function || 224,256 || 6 rounds (Round 1) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] | + | | semi-free-start collision || compression function || 224,256 || 6 rounds (Round 1/2) || 2<sup>64</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] |
|- | |- | ||
| distinguisher || output transformation || 224,256 || 7 rounds || 2<sup>56</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] | | distinguisher || output transformation || 224,256 || 7 rounds || 2<sup>56</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] | ||
Line 127: | Line 180: | ||
| distinguisher || permutation || 224,256 || 7 rounds || 2<sup>55</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] | | distinguisher || permutation || 224,256 || 7 rounds || 2<sup>55</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420 Mendel,Peyrin,Rechberger,Schläffer] | ||
|- | |- | ||
− | | semi-free-start collision || compression function || 256 || 6 rounds (Round 1) || 2<sup>120</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943 Mendel,Rechberger,Schläffer,Thomsen] | + | | semi-free-start collision || compression function || 256 || 6 rounds (Round 1/2) || 2<sup>120</sup> || 2<sup>64</sup> || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
− | | semi-free-start collision || compression function || 224,256 || 5 rounds (Round 1) || 2<sup>64</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943 Mendel,Rechberger,Schläffer,Thomsen] | + | | semi-free-start collision || compression function || 224,256 || 5 rounds (Round 1/2) || 2<sup>64</sup> || - || [http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943 Mendel,Rechberger,Schläffer,Thomsen] |
|- | |- | ||
| observation || hash || all || || || || [http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf Kelsey] | | observation || hash || all || || || || [http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf Kelsey] | ||
Line 141: | Line 194: | ||
|} | |} | ||
+ | |||
+ | <bibtex> | ||
+ | @inproceedings{DBLP:dblp_conf/fse/JeanNP12, | ||
+ | author = {Jérémy Jean and | ||
+ | María Naya-Plasencia and | ||
+ | Thomas Peyrin and | ||
+ | Thomas Peyrin}, | ||
+ | title = {Improved Rebound Attack on the Finalist Grøstl.}, | ||
+ | booktitle = {FSE}, | ||
+ | year = {2012}, | ||
+ | pages = {110-126}, | ||
+ | url = {http://dx.doi.org/10.1007/978-3-642-34047-5_7}, | ||
+ | crossref = {2012}, | ||
+ | abstract = {Grøstl is one of the five finalist hash functions of the SHA-3 competition. For entering this final phase, the designers have tweaked the submitted versions. This tweak renders inapplicable the best known distinguishers on the compression function presented by Peyrin [18] that exploited the internal permutation properties. Since the beginning of the final round, very few analysis have been published on Grøstl. Currently, the best known rebound-based results on the permutation and the compression function for the 256-bit version work up to 8 rounds, and up to 7 rounds for the 512-bit version. In this paper, we present new rebound distinguishers that work on a higher number of rounds for the permutations of both 256 and 512-bit versions of this finalist, that is 9 and 10 respectively. Our distinguishers make use of an algorithm that we propose for solving three fully active states in the middle of the differential characteristic, while the Super-Sbox technique only handles two.} | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{cryptoeprint:2012:206, | ||
+ | author = {Shuang Wu and Dengguo Feng and Wenling Wu and Jian Guo and Le Dong and Jian Zou}, | ||
+ | title = {(Pseudo) Preimage Attack on Round-Reduced Gr{\o}stl Hash Function and Others (Extended Version)}, | ||
+ | howpublished = {Cryptology ePrint Archive, Report 2012/206}, | ||
+ | year = {2012}, | ||
+ | url = {http://eprint.iacr.org/2012/206.pdf}, | ||
+ | abstract = {The Gr{\o}stl hash function is one of the 5 final round candidates of the SHA-3 competition hosted by NIST. In this paper, we study the preimage resistance of the Gr{\o}stl hash function. We propose pseudo preimage attacks on Gr{\o}stl hash function for both 256-bit and 512-bit versions, i.e. we need to choose the initial value in order to invert the hash function. Pseudo preimage attack on 5(out of 10)-round Gr{\o}stl-256 has a complexity of $(2^{244.85},2^{230.13})$ (in time and memory) and pseudo preimage attack on 8(out of 14)-round Gr{\o}stl-512 has a complexity of $(2^{507.32},2^{507.00})$. To the best of our knowledge, our attacks are the first (pseudo) preimage attacks on round-reduced Gr{\o}stl hash function, including its compression function and output transformation. These results are obtained by a variant of meet-in-the-middle preimage attack framework by Aoki and Sasaki. We also improve the time complexities of the preimage attacks against 5-round Whirlpool and 7-round AES hashes by Sasaki in FSE~2011.} | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{emami-multitarget, | ||
+ | author = {Sareh Emami and Praveen Gauravaram and Josef Pieprzyk and Ron Steinfeld}, | ||
+ | title = {(Chosen-multi-target) preimage attacks on reduced Grøstl-0}, | ||
+ | url = {http://web.science.mq.edu.au/~rons/preimageattack-final.pdf}, | ||
+ | abstract = {The cryptographic hash function Grøstl is a finalist in the NIST’s SHA-3 hash function | ||
+ | competition and it is a tweaked variant of its predecessor called Grøstl-0, a second round SHA-3 candidate. | ||
+ | In this article, we consider 256-bit Grøstl-0 and its 512-bit compression function. We show that | ||
+ | internal differential trails built between the two almost similar looking permutations of the compression | ||
+ | function can be coverted to chosen-multi-target-preimage attacks, a variant of multi-target preimage | ||
+ | attacks. Consequently, we show chosen-multi-target-preimage attacks for up to 9 out of 10 rounds of | ||
+ | the compression function and up to 7 rounds of the hash function. Finally, we use these attacks as a | ||
+ | tool to find preimages and pseudo preimages for 6 rounds of the 256-bit Grøstl-0 hash function.} | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @misc{cryptoeprint:2012:141, | ||
+ | author = {Dmitry Khovratovich}, | ||
+ | title = {Bicliques for permutations: collision and preimage attacks in stronger settings}, | ||
+ | howpublished = {Cryptology ePrint Archive, Report 2012/141}, | ||
+ | year = {2012}, | ||
+ | url = {http://eprint.iacr.org/2012/141.pdf}, | ||
+ | abstract = {We extend and improve biclique attacks, which were recently introduced for the cryptanalysis of block ciphers and hash functions. While previous attacks required a primitive to have a key or a message schedule, we show how to mount attacks on the primitives with these parameters fixed, i.e. on permutations. We introduce the concept of sliced bicliques, which is a translation of regular bicliques to the framework with permutations. | ||
+ | |||
+ | The new framework allows to convert preimage attacks into collision attacks and derive the first collision attacks on the reduced SHA-3 finalist Skein in the hash function setting up to 11 rounds. We also demonstrate new preimage attacks on the reduced Skein and the output transformation of the reduced Gr{\o}stl. Finally, the sophisticated technique of message compensation gets a simple explanation with bicliques.} | ||
+ | } | ||
+ | </bibtex> | ||
+ | |||
+ | <bibtex> | ||
+ | @inproceedings{fseBCD11, | ||
+ | author = {Christina Boura and Anne Canteaut and Christophe De Cannière}, | ||
+ | title = {Higher-order differential properties of Keccak and Luffa}, | ||
+ | url = {http://fse2011.mat.dtu.dk/slides/Higher-order%20differential%20properties%20of%20Keccak%20and%20Luffa.pdf}, | ||
+ | booktitle = {FSE}, | ||
+ | year = {2011}, | ||
+ | series = {LNCS}, | ||
+ | pages = {252-269}, | ||
+ | publisher = {Springer}, | ||
+ | volume = {6733}, | ||
+ | abstract = {In this paper, we identify higher-order differential and zero-sum properties in the full Keccak-f permutation, in the Luffa v1 hash function, and in components of the Luffa v2 algorithm. These structural properties rely on a new bound on the degree of iterated permutations with a nonlinear layer composed of parallel applications of smaller balanced Sboxes. These techniques yield zero-sum partitions of size $2^{1590}$ for the full Keccak-f permutation and several observations on the Luffa hash family. We first show that Luffa v1 applied to one-block messages is a function of 255 variables with degree at most 251. This observation leads to the construction of a higher-order differential distinguisher for the full Luffa v1 hash function, similar to the one presented by Watanabe et al. on a reduced version. We show that similar techniques can be used to find all-zero higher-order differentials in the Luffa v2 compression function, but the additional blank round destroys this property in the hash function.}, | ||
+ | </bibtex> | ||
<bibtex> | <bibtex> | ||
Line 146: | Line 269: | ||
author = {Martin Schläffer}, | author = {Martin Schläffer}, | ||
title = {Updated Differential Analysis of Grøstl}, | title = {Updated Differential Analysis of Grøstl}, | ||
− | howpublished = { | + | howpublished = {Grøstl website}, |
− | + | month = {January}, | |
− | + | year = {2011}, | |
url = {http://groestl.info/groestl-analysis.pdf}, | url = {http://groestl.info/groestl-analysis.pdf}, | ||
abstract = {Grøstl is a SHA-3 finalist with clear proofs against a large class of differential attacks, similar to those of MD6. Furthermore, in this note we provide an update also regarding more advanced types of differential attacks that have been developed in recent years. We apply the rebound attacks on the initial submission to the tweaked version of Grøstl. We have analyzed the round-reduced hash function and compression function of Grøstl-256 (10 rounds) and Grøstl-512 (14 rounds). For both versions, we get collisions for 3 rounds of the hash function and collisions for 6 rounds of the compression function. We hope that our own efforts on improving the cryptanalysis will continue to motivate and accelerate external cryptanalysis.}, | abstract = {Grøstl is a SHA-3 finalist with clear proofs against a large class of differential attacks, similar to those of MD6. Furthermore, in this note we provide an update also regarding more advanced types of differential attacks that have been developed in recent years. We apply the rebound attacks on the initial submission to the tweaked version of Grøstl. We have analyzed the round-reduced hash function and compression function of Grøstl-256 (10 rounds) and Grøstl-512 (14 rounds). For both versions, we get collisions for 3 rounds of the hash function and collisions for 6 rounds of the compression function. We hope that our own efforts on improving the cryptanalysis will continue to motivate and accelerate external cryptanalysis.}, | ||
Line 160: | Line 283: | ||
howpublished = {Cryptology ePrint Archive, Report 2010/607}, | howpublished = {Cryptology ePrint Archive, Report 2010/607}, | ||
year = {2010}, | year = {2010}, | ||
− | |||
url = {http://eprint.iacr.org/2010/607.pdf}, | url = {http://eprint.iacr.org/2010/607.pdf}, | ||
abstract = {Rebound attacks are a state-of-the-art analysis method for hash functions. These cryptanalysis methods are based on a well chosen differential path and have been applied to several hash functions from the SHA-3 competition, providing the best known analysis in these cases. In this paper we study rebound attacks in detail and find for a great number of cases, that complexities of existing attacks can be improved. This is done by determining problems that adapt optimally to the cryptanalytic situation, and by using better algorithms to follow the differential path. These improvements are essentially based on merging big lists in a more efficient way, as well as on new ideas on how to reduce the complexities. As a result, we introduce general purpose new algorithms for enabling further rebound analysis to be as performant as possible. We illustrate our new algorithms for real hash functions and demonstrate how to reduce the complexities of the best known analysis on five hash functions: JH, Grøstl, ECHO, Luffa and Lane (the first four are round two SHA-3 candidates).}, | abstract = {Rebound attacks are a state-of-the-art analysis method for hash functions. These cryptanalysis methods are based on a well chosen differential path and have been applied to several hash functions from the SHA-3 competition, providing the best known analysis in these cases. In this paper we study rebound attacks in detail and find for a great number of cases, that complexities of existing attacks can be improved. This is done by determining problems that adapt optimally to the cryptanalytic situation, and by using better algorithms to follow the differential path. These improvements are essentially based on merging big lists in a more efficient way, as well as on new ideas on how to reduce the complexities. As a result, we introduce general purpose new algorithms for enabling further rebound analysis to be as performant as possible. We illustrate our new algorithms for real hash functions and demonstrate how to reduce the complexities of the best known analysis on five hash functions: JH, Grøstl, ECHO, Luffa and Lane (the first four are round two SHA-3 candidates).}, | ||
Line 167: | Line 289: | ||
<bibtex> | <bibtex> | ||
− | @ | + | @inproceedings{groestlechoSLWSO10, |
author = {Yu Sasaki and Yang Li and Lei Wang and Kazuo Sakiyama and Kazuo Ohta}, | author = {Yu Sasaki and Yang Li and Lei Wang and Kazuo Sakiyama and Kazuo Ohta}, | ||
− | title = {New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl | + | title = {New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl}, |
− | }, | + | booktitle = {ASIACRYPT}, |
− | + | year = {2010}, | |
− | + | pages = {38-55}, | |
+ | publisher = {Springer}, | ||
+ | series = {LNCS}, | ||
+ | volume = {6477}, | ||
url = {http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf}, | url = {http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf}, | ||
abstract = {In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal | abstract = {In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal | ||
Line 189: | Line 314: | ||
<bibtex> | <bibtex> | ||
− | @ | + | @inproceedings{ITP10, |
author = {Kota Ideguchi and Elmar Tischhauser and Bart Preneel}, | author = {Kota Ideguchi and Elmar Tischhauser and Bart Preneel}, | ||
title = {Improved Collision Attacks on the Reduced-Round Grøstl Hash Function}, | title = {Improved Collision Attacks on the Reduced-Round Grøstl Hash Function}, | ||
howpublished = {Cryptology ePrint Archive, Report 2010/375}, | howpublished = {Cryptology ePrint Archive, Report 2010/375}, | ||
− | + | booktitle = {ISC}, | |
− | + | year = {2010}, | |
+ | pages = {1-16}, | ||
+ | publisher = {Springer}, | ||
+ | series = {LNCS}, | ||
+ | volume = {6531}, | ||
url = {http://eprint.iacr.org/2010/375.pdf}, | url = {http://eprint.iacr.org/2010/375.pdf}, | ||
abstract = {We analyze the Gr{\o}stl hash function, which is a 2nd-round candidate of the SHA-3 competition. Using the start-from-the-middle variant of the rebound technique, we show collision attacks on the Gr{\o}stl-256 hash function reduced to 5 and 6 out of 10 rounds with time complexities $2^{48}$ and $2^{112}$, respectively. Furthermore, we demonstrate semi-free-start collision attacks on the Gr{\o}stl-224 and -256 hash functions reduced to 7 rounds and the Gr{\o}stl-224 and -256 compression functions reduced to 8 rounds. Our attacks are based on differential paths between the two permutations $P$ and $Q$ of Gr{\o}stl, a strategy introduced by Peyrin to construct distinguishers for the compression function. In this paper, we extend this approach to construct collision and semi-free-start collision attacks for both the hash and the compression function. Finally, we present improved distinguishers for reduced-round versions of the Gr{\o}stl-224 and -256 permutations.}, | abstract = {We analyze the Gr{\o}stl hash function, which is a 2nd-round candidate of the SHA-3 competition. Using the start-from-the-middle variant of the rebound technique, we show collision attacks on the Gr{\o}stl-256 hash function reduced to 5 and 6 out of 10 rounds with time complexities $2^{48}$ and $2^{112}$, respectively. Furthermore, we demonstrate semi-free-start collision attacks on the Gr{\o}stl-224 and -256 hash functions reduced to 7 rounds and the Gr{\o}stl-224 and -256 compression functions reduced to 8 rounds. Our attacks are based on differential paths between the two permutations $P$ and $Q$ of Gr{\o}stl, a strategy introduced by Peyrin to construct distinguishers for the compression function. In this paper, we extend this approach to construct collision and semi-free-start collision attacks for both the hash and the compression function. Finally, we present improved distinguishers for reduced-round versions of the Gr{\o}stl-224 and -256 permutations.}, | ||
Line 201: | Line 330: | ||
<bibtex> | <bibtex> | ||
− | @ | + | @inproceedings{Pey10, |
author = {Thomas Peyrin}, | author = {Thomas Peyrin}, | ||
title = {Improved Differential Attacks for ECHO and Grostl}, | title = {Improved Differential Attacks for ECHO and Grostl}, | ||
− | + | booktitle = {CRYPTO}, | |
− | + | year = {2010}, | |
− | + | pages = {370-392}, | |
+ | publisher = {Springer}, | ||
+ | series = {LNCS}, | ||
+ | volume = {6223}, | ||
url = {http://eprint.iacr.org/2010/223.pdf}, | url = {http://eprint.iacr.org/2010/223.pdf}, | ||
abstract = {We present improved cryptanalysis of two second-round SHA-3 candidates: the AES-based hash functions ECHO and Grostl. We explain methods for building better differential trails for ECHO by increasing the granularity of the truncated differential paths previously considered. In the case of Grostl, we describe a new technique, the internal differential attack, which shows that when using parallel computations designers should also consider the differential security between the parallel branches. Then, we exploit the recently introduced start-from-the-middle or Super-Sbox attacks, that proved to be very efficient when attacking AES-like permutations, to achieve a very efficient utilization of the available freedom degrees. Finally, we obtain the best known attacks so far for both ECHO and Grostl. In particular, we are able to mount a distinguishing attack for the full Grostl-256 compression function.}, | abstract = {We present improved cryptanalysis of two second-round SHA-3 candidates: the AES-based hash functions ECHO and Grostl. We explain methods for building better differential trails for ECHO by increasing the granularity of the truncated differential paths previously considered. In the case of Grostl, we describe a new technique, the internal differential attack, which shows that when using parallel computations designers should also consider the differential security between the parallel branches. Then, we exploit the recently introduced start-from-the-middle or Super-Sbox attacks, that proved to be very efficient when attacking AES-like permutations, to achieve a very efficient utilization of the available freedom degrees. Finally, we obtain the best known attacks so far for both ECHO and Grostl. In particular, we are able to mount a distinguishing attack for the full Grostl-256 compression function.}, | ||
Line 216: | Line 348: | ||
author = {Henri Gilbert and Thomas Peyrin}, | author = {Henri Gilbert and Thomas Peyrin}, | ||
title = {Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations}, | title = {Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations}, | ||
− | |||
booktitle = {FSE}, | booktitle = {FSE}, | ||
year = {2010}, | year = {2010}, | ||
series = {LNCS}, | series = {LNCS}, | ||
+ | volume = {6147}, | ||
publisher = {Springer}, | publisher = {Springer}, | ||
− | + | pages = {365-383}, | |
+ | url = {http://eprint.iacr.org/2009/531.pdf}, | ||
abstract = {In this paper, we improve the recent rebound and start-from-the-middle attacks on AES-like permutations. Our new cryptanalysis technique uses the fact that one can view two rounds of such permutations as a layer of big Sboxes preceded and followed by simple affine transformations. The big Sboxes encountered in this alternative representation are named Super-Sboxes. We apply this method to two second-round SHA-3 candidates Grostl and ECHO, and obtain improvements over the previous cryptanalysis results for these two schemes. Moreover, we improve the best distinguisher for the AES block cipher in the known-key setting, reaching 8 rounds for the 128-bit version.} | abstract = {In this paper, we improve the recent rebound and start-from-the-middle attacks on AES-like permutations. Our new cryptanalysis technique uses the fact that one can view two rounds of such permutations as a layer of big Sboxes preceded and followed by simple affine transformations. The big Sboxes encountered in this alternative representation are named Super-Sboxes. We apply this method to two second-round SHA-3 candidates Grostl and ECHO, and obtain improvements over the previous cryptanalysis results for these two schemes. Moreover, we improve the best distinguisher for the AES block cipher in the known-key setting, reaching 8 rounds for the 128-bit version.} | ||
</bibtex> | </bibtex> | ||
Line 312: | Line 445: | ||
title = {Some notes on Grøstl}, | title = {Some notes on Grøstl}, | ||
url = {http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf}, | url = {http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf}, | ||
− | howpublished = { | + | howpublished = {NIST hash function mailing list}, |
+ | month = {April}, | ||
year = {2009}, | year = {2009}, | ||
abstract = {These are some quick notes on some properties and | abstract = {These are some quick notes on some properties and | ||
Line 327: | Line 461: | ||
title = {An observation on Grøstl}, | title = {An observation on Grøstl}, | ||
url = {http://www.larc.usp.br/~pbarreto/Grizzly.pdf}, | url = {http://www.larc.usp.br/~pbarreto/Grizzly.pdf}, | ||
− | howpublished = { | + | howpublished = {NIST hash function mailing list}, |
+ | month = {November}, | ||
year = {2008}, | year = {2008}, | ||
abstract = {An alternative view of the Groestl SHA-3 submission is | abstract = {An alternative view of the Groestl SHA-3 submission is |
Latest revision as of 11:12, 1 August 2013
1 The algorithm
- Author(s): Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
- Website: http://www.groestl.info
- NIST submission package:
- Round 3: Groestl_FinalRnd.zip
- Round 1/2: Grostl_Round2.zip (old version: Grostl.zip)
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Grøstl -- a SHA-3 candidate
- ,2011
- http://www.groestl.info/Groestl.pdf
BibtexAuthor : Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Grøstl -- a SHA-3 candidate
In : -
Address :
Date : 2011
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Grøstl Addendum
- ,2009
- http://groestl.info/Groestl-addendum.pdf
BibtexAuthor : Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Grøstl Addendum
In : -
Address :
Date : 2009
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Grøstl -- a SHA-3 candidate
- ,2008
- http://groestl.info/Groestl-0.pdf
BibtexAuthor : Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Grøstl -- a SHA-3 candidate
In : -
Address :
Date : 2008
2 Cryptanalysis
We distinguish between two cases: results on the complete hash function, and results on underlying building blocks.
A description of the tables is given here.
Recommended security parameter: 10 rounds (n=224,256); 14 rounds (n=384,512)
2.1 Hash function
Here we list results on the hash function according to the NIST requirements. The only allowed modification is to change the security parameter.
Type of Analysis | Hash Size (n) | Parameters | Compression Function Calls | Memory Requirements | Reference |
collision | 224,256 | 3 rounds | 264 | - | Schläffer |
collision | 512 | 3 rounds | 2192 | - | Schläffer |
2.2 Building blocks
Here we list results on underlying building blocks, and the hash function modified by other means than the security parameter.
Note that these results assume more direct control or access over some internal variables (aka. free-start, pseudo, compression function, block cipher, or permutation attacks).
Type of Analysis | Hash Function Part | Hash Size (n) | Parameters/Variants | Compression Function Calls | Memory Requirements | Reference |
distinguisher | permutation | 256 | 9 rounds | 2368 | 264 | Jean,Naya-Plasencia,Peyrin |
distinguisher | permutation | 512 | 8 rounds | 2280 | 264 | Jean,Naya-Plasencia,Peyrin |
distinguisher | permutation | 512 | 9 rounds | 2328 | 264 | Jean,Naya-Plasencia,Peyrin |
distinguisher | permutation | 512 | 10 rounds | 2392 | 264 | Jean,Naya-Plasencia,Peyrin |
preimage | output transformation | 256 | 5 rounds | 2206 | 248 | Wu,Feng,Wu,Guo,Dong,Zou |
pseudo preimage | hash function | 256 | 5 rounds | 2244.85 | 2230.13 | Wu,Feng,Wu,Guo,Dong,Zou |
preimage | output transformation | 512 | 8 rounds | 2495 | 216 | Wu,Feng,Wu,Guo,Dong,Zou |
pseudo preimage | hash function | 512 | 8 rounds | 2507.32 | 2507 | Wu,Feng,Wu,Guo,Dong,Zou |
preimage | output transformation | 256 | 6 rounds | 2251 | Khovratovich | |
preimage | compression function | 256 | 6 rounds | 2128 | Emami,Guaravaram,Pieprzyk,Steinfeld | |
chosen multitarget preimage | compression function | 256 | 6 rounds / 264 targets | 264 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 6 rounds / 28 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 7 rounds / 280 targets | 264 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 7 rounds / 224 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 8 rounds / 2192 targets | 264 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 8 rounds / 2136 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | compression function | 256 | 9 rounds / 2192 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 5 rounds / 264 targets | 280 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 6 rounds / 216 targets | 2136 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 6 rounds / 264 targets | 264 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 6 rounds / 28 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 7 rounds / 280 targets | 264 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
chosen multitarget preimage | hash function | 256 | 7 rounds / 224 targets | 2120 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
preimage | hash function | 256 | 5 rounds | 2144 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
preimage | hash function | 256 | 6 rounds | 2144 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
pseudo preimage | hash function | 256 | 6 rounds | 2128 | 264 | Emami,Guaravaram,Pieprzyk,Steinfeld |
distinguisher | permutation | 256 | 10 rounds | 2509 | Boura,Canteaut,DeCannière | |
semi-free-start collision | compression function | 256 | 6 rounds | 2120 | 264 | Schläffer |
semi-free-start collision | compression function | 384,512 | 6 rounds | 2180 | 264 | Schläffer |
collision | hash function | 224,256 | 5 rounds (Round 1/2) | 248 | 232 | Ideguchi,Tischhauser,Preneel |
collision | hash function | 256 | 6 rounds (Round 1/2) | 2112 | 232 | Ideguchi,Tischhauser,Preneel |
collision | hash function | 224,256 | 4 rounds (Round 1/2) | 264 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
collision | hash function | 224,256 | 3 rounds (Round 1/2) | 264 | - | Mendel,Rechberger,Schläffer,Thomsen |
collision | hash function | 384,512 | 5 rounds (Round 1/2) | 2176 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
collision | hash function | 384,512 | 4 rounds (Round 1/2) | 264 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
distinguisher | compression function | 256 | 10 rounds (Round 1/2) | 2175 | 264 | Naya-Plasencia |
distinguisher | compression function | 512 | 11 rounds (Round 1/2) | 2630 | 264 | Naya-Plasencia |
distinguisher | permutation | 256 | 8 rounds | 248 | 28 | Sasaki,Li,Wang,Sakiyama,Ohta |
semi-free-start collision | compression function | 512 | 7 rounds | 2152 | 256 | Sasaki,Li,Wang,Sakiyama,Ohta |
semi-free-start collision | compression function | 224,256 | 7 rounds (Round 1/2) | 280 | 232 | Ideguchi,Tischhauser,Preneel |
semi-free-start collision | compression function | 224,256 | 8 rounds (Round 1/2) | 2192 | 264 | Ideguchi,Tischhauser,Preneel |
distinguisher | permutation | 224,256 | 7 rounds | 219 | - | Ideguchi,Tischhauser,Preneel |
distinguisher | permutation | 224,256 | 8 rounds | 264 | 264 | Ideguchi,Tischhauser,Preneel |
distinguisher | compression function | 256 | 10 rounds (Round 1/2) | 2192 | 264 | Peyrin |
distinguisher | compression function | 256 | 9 rounds (Round 1/2) | 280 | 264 | Peyrin |
distinguisher | compression function | 512 | 11 rounds (Round 1/2) | 2640 | 264 | Peyrin |
semi-free-start collision | compression function | 256 | 7 rounds (Round 1/2) | 2120 | 264 | Gilbert,Peyrin |
distinguisher | compression function | 256 | 8 rounds (Round 1/2) | 2112 | 264 | Gilbert,Peyrin |
distinguisher | permutation | 256 | 8 rounds | 2112 | 264 | Gilbert,Peyrin |
semi-free-start collision | compression function | 256 | 7 rounds (Round 1/2) | 2120 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 384,512 | 7 rounds (Round 1/2) | 2152 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 224,256 | 6 rounds (Round 1/2) | 264 | 264 | Mendel,Peyrin,Rechberger,Schläffer |
distinguisher | output transformation | 224,256 | 7 rounds | 256 | - | Mendel,Peyrin,Rechberger,Schläffer |
distinguisher | permutation | 224,256 | 7 rounds | 255 | - | Mendel,Peyrin,Rechberger,Schläffer |
semi-free-start collision | compression function | 256 | 6 rounds (Round 1/2) | 2120 | 264 | Mendel,Rechberger,Schläffer,Thomsen |
semi-free-start collision | compression function | 224,256 | 5 rounds (Round 1/2) | 264 | - | Mendel,Rechberger,Schläffer,Thomsen |
observation | hash | all | Kelsey | |||
observation | block cipher | all | Barreto | |||
free-start collision | compression function | all | any | 22n/3 | 22n/3 | submission document |
pseudo-preimage | compression function | all | any | 2n | - | submission document |
Jérémy Jean, María Naya-Plasencia, Thomas Peyrin, Thomas Peyrin - Improved Rebound Attack on the Finalist Grøstl.
- FSE pp. 110-126,2012
- http://dx.doi.org/10.1007/978-3-642-34047-5_7
BibtexAuthor : Jérémy Jean, María Naya-Plasencia, Thomas Peyrin, Thomas Peyrin
Title : Improved Rebound Attack on the Finalist Grøstl.
In : FSE -
Address :
Date : 2012
Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, Jian Zou - (Pseudo) Preimage Attack on Round-Reduced Gr{\o}stl Hash Function and Others (Extended Version)
- ,2012
- http://eprint.iacr.org/2012/206.pdf
BibtexAuthor : Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, Jian Zou
Title : (Pseudo) Preimage Attack on Round-Reduced Gr{\o}stl Hash Function and Others (Extended Version)
In : -
Address :
Date : 2012
Sareh Emami, Praveen Gauravaram, Josef Pieprzyk, Ron Steinfeld - (Chosen-multi-target) preimage attacks on reduced Grøstl-0
- http://web.science.mq.edu.au/~rons/preimageattack-final.pdf
BibtexAuthor : Sareh Emami, Praveen Gauravaram, Josef Pieprzyk, Ron Steinfeld
Title : (Chosen-multi-target) preimage attacks on reduced Grøstl-0
In : -
Address :
Date :
Dmitry Khovratovich - Bicliques for permutations: collision and preimage attacks in stronger settings
- ,2012
- http://eprint.iacr.org/2012/141.pdf
BibtexAuthor : Dmitry Khovratovich
Title : Bicliques for permutations: collision and preimage attacks in stronger settings
In : -
Address :
Date : 2012
Christina Boura, Anne Canteaut, Christophe De Cannière - Higher-order differential properties of Keccak and Luffa
- FSE 6733:252-269,2011
- http://fse2011.mat.dtu.dk/slides/Higher-order%20differential%20properties%20of%20Keccak%20and%20Luffa.pdf
BibtexAuthor : Christina Boura, Anne Canteaut, Christophe De Cannière
Title : Higher-order differential properties of Keccak and Luffa
In : FSE -
Address :
Date : 2011
Martin Schläffer - Updated Differential Analysis of Grøstl
- , January 2011
- http://groestl.info/groestl-analysis.pdf
BibtexAuthor : Martin Schläffer
Title : Updated Differential Analysis of Grøstl
In : -
Address :
Date : January 2011
María Naya-Plasencia - Scrutinizing rebound attacks: new algorithms for improving the complexities
- ,2010
- http://eprint.iacr.org/2010/607.pdf
BibtexAuthor : María Naya-Plasencia
Title : Scrutinizing rebound attacks: new algorithms for improving the complexities
In : -
Address :
Date : 2010
Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, Kazuo Ohta - New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl
- ASIACRYPT 6477:38-55,2010
- http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SASAKI_ECHOanalysisFinal.pdf
BibtexAuthor : Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, Kazuo Ohta
Title : New Non-Ideal Properties of AES-Based Permutations: Applications to ECHO and Grøstl
In : ASIACRYPT -
Address :
Date : 2010
Kota Ideguchi, Elmar Tischhauser, Bart Preneel - Improved Collision Attacks on the Reduced-Round Grøstl Hash Function
- ISC 6531:1-16,2010
- http://eprint.iacr.org/2010/375.pdf
BibtexAuthor : Kota Ideguchi, Elmar Tischhauser, Bart Preneel
Title : Improved Collision Attacks on the Reduced-Round Grøstl Hash Function
In : ISC -
Address :
Date : 2010
Thomas Peyrin - Improved Differential Attacks for ECHO and Grostl
- CRYPTO 6223:370-392,2010
- http://eprint.iacr.org/2010/223.pdf
BibtexAuthor : Thomas Peyrin
Title : Improved Differential Attacks for ECHO and Grostl
In : CRYPTO -
Address :
Date : 2010
Henri Gilbert, Thomas Peyrin - Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations
- FSE 6147:365-383,2010
- http://eprint.iacr.org/2009/531.pdf
BibtexAuthor : Henri Gilbert, Thomas Peyrin
Title : Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations
In : FSE -
Address :
Date : 2010
Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - Rebound Attacks on the Reduced Grøstl Hash Function
- CT-RSA 5985:350-365,2010
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=128007&pCurrPk=47053
BibtexAuthor : Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : Rebound Attacks on the Reduced Grøstl Hash Function
In : CT-RSA -
Address :
Date : 2010
Florian Mendel, Thomas Peyrin, Christian Rechberger, Martin Schläffer - Improved Cryptanalysis of the Reduced Grøstl
Compression Function, ECHO Permutation and AES Block Cipher
- SAC 5867:16-35,2009
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124407&pCurrPk=44420
BibtexAuthor : Florian Mendel, Thomas Peyrin, ChristianRechberger, Martin Schläffer
Compression Function, ECHO Permutation and AES Block Cipher
Title : Improved Cryptanalysis of the Reduced Grøstl
In : SAC -
Address :
Date : 2009
Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen - The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl
- FSE 5665:260-276,2009
- http://online.tu-graz.ac.at/tug_online/voe_main2.getVollText?pDocumentNr=124409&pCurrPk=40943
BibtexAuthor : Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen
Title : The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl
In : FSE -
Address :
Date : 2009
John Kelsey - Some notes on Grøstl
- , April 2009
- http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf
BibtexAuthor : John Kelsey
Title : Some notes on Grøstl
In : -
Address :
Date : April 2009
Paulo S. L. M. Barreto - An observation on Grøstl