
The Hash Function Cheetah:

Specification and Supporting Documentation

Dmitry Khovratovich, Alex Biryukov, Ivica Nikolic

October 30, 2008

Contents

1 Specification 2
1.1 Preliminaries . 2
1.2 Hash function . 2
1.3 Compression function . 3

1.3.1 Cheetah-224 and Cheetah-256 . 5
1.3.2 Cheetah-384 and Cheetah-512 . 8

1.4 Cheetah as PRF and MAC . 9
1.5 Other digest sizes . 9

2 Design rationale 10
2.1 Hash function . 10
2.2 Compression function . 10

2.2.1 Round primitives . 10
2.3 Number of rounds as tunable parameter . 11

3 Resistance to attacks 11
3.1 Generic attacks . 11

3.1.1 Herding attacks . 11
3.1.2 Fast second preimage attack . 11
3.1.3 Multicollisions . 12
3.1.4 Length-extension attacks . 12

3.2 Attacks on the compression function . 12
3.2.1 Collisions . 12
3.2.2 Preimages and second preimages . 15

3.3 HMAC-PRF security . 15
3.4 Randomized hashing attack . 15
3.5 Security level . 15

4 Advantages and limitations 15

5 Software and hardware implementation 16
5.1 Software . 16
5.2 Hardware . 18

1

1 Specification

1.1 Preliminaries

The Galois field used in Cheetah is defined as a set of polynomials of degree up to 7 with coefficients
from F2. The multiplication is performed modulo the following irreducible polynomial:

m(x) = x8 + x4 + x3 + x+ 1. (1)

The hexadecimal and binary representations of the field elements are also used in this proposal.
E.g., the polynomial x6+x3+x+1 is defined as ′01001011′ in the binary and ′47′ in the hexadecimal
representation, respectively.

The addition is the bitwise xor throughout this paper, except for loop and array indices.

1.2 Hash function

Cheetah is a set of hash functions each dedicated to a particular digest length. The supported
digests are of size 224, 256, 384, and 512 bits, which are produced by Cheetah-224, Cheetah-256,
Cheetah-384, and Cheetah-512, respectively.

Cheetah supports salt, a method for randomized hashing, which prevents a few types of generic
attacks (see Section 3). The salt is a randomly chosen parameter, which shall be fixed just before
hashing. The salt, if used, is a 128-bit value in Cheetah-224 and Cheetah-256, and a 256-bit value
in Cheetah-384 and Cheetah-512. If salt is used it is inserted to each message block. Since it affects
performance we propose two separate procedures for hashing: with and without salting.

Let us define the message padding using the size s of salt as a parameter (0 bits stand for
hashing without salt). A message to be hashed is padded to the multiple of (1024− s) bits using
the following procedure. First, bit 1 is appended to the end, and bits 0 are appended. Then the
message length (8-byte value) and the digest size (2-byte value) are added. Both values are treated
in the big-endian model. The number of zero bits is minimal such that the resulting bit length
is divisible by (1024 − s). The padded message is divided to n + 1 (1024 − s)-bit blocks. Each
block is concatenated with the salt value if it is used. With respect to the salt size, the padding
defines procedures FreshPadding and SaltyPadding, which are a part of the Cheetah pseudo-code
(see below).

The compression function is the core of the Cheetah hash function, which takes the current
message block and its index (8-byte value), the intermediate hash value, and the salt (optionally)
as an input and outputs the next intermediate hash value. The first hash value is set to zero by
default. After the last message block has been processed the resulting value is used to produce
the final digest. This can be summarized in the following pseudo-code:

Cheetah_Fresh_Hash(Message, InitialValue) {
MessageBlocks[0..n] = FreshPadding(Message);
IntermediateHashValue = InitialValue;
for(i=0; i<n; i++)

IntermediateHashValue +=
CheetahCompress(IntermediateHashValue, MessageBlock[i], i);

LastBlockPermutation(IntermediateHashValue);
IntermediateHashValue +=

CheetahCompress(IntermediateHashValue, MessageBlock[n], n);
if(Cheetah-224 or Cheetah-384)

return Truncate(IntermediateHashValue);
else

return IntermediateHashValue;
}

Cheetah_Salty_Hash(Message, Salt, InitialValue) {

2

Salt

0

Message

Padding

M [0] M [1] M [n]

0 1

· · ·

· · ·

n

Truncation Digest

Last block permutation

n− 1

M [n− 1]

Figure 1: The outline of Cheetah.

MessageBlocks[0..n] = SaltyPadding(Message,Salt);
IntermediateHashValue = InitialValue;
for(i=0; i<n; i++)

IntermediateHashValue +=
CheetahCompress(IntermediateHashValue, MessageBlock[i], i);

LastBlockPermutation(IntermediateHashValue);
IntermediateHashValue +=

CheetahCompress(IntermediateHashValue, MessageBlock[n], n);
if(Cheetah-224 or Cheetah-384)

return Truncate(IntermediateHashValue);
else

return IntermediateHashValue;
}

The versions of Cheetah differ in these functions as follows. First, the InitialValue and the
IntermediateHashValue are 32-byte (256-bit) vectors in Cheetah-224 and Cheetah-256, and 64-
byte (512-bit) vectors in Cheetah-384 and Cheetah-512. The difference in the salt length has been
described above. The CheetahCompress function is specified in Section 1.3.

The procedures FreshPadding and SaltyPadding are specified above. The LastBlockPermuta-
tion function swaps the first and the second halves of the IntermediateHashValue, i. e. column
0 is swapped with column 4, column 1 with column 5, column 2 with column 6, column 3 with
column 7.

Finally, the Truncate function removes the last 32 bits of the input in Cheetah-224 and the last
128 bits of the input in Cheetah-384.

1.3 Compression function

The Cheetah compression function is an iterative transformation based on the Rijndael block cipher.
The size of the internal state (SI) and the number of rounds (Nr) varies for different versions of
Cheetah, based on the output digest size.

Digest size Internal state Message block Internal rounds Message schedule rounds
224 256 1024 16 3
256 256 1024 16 3
384 512 1024 12 5
512 512 1024 12 5

3

The message block is expanded by the means of the message schedule. The expanded message
is divided into Nr vectors, which are xored to the internal state before every round. The Cheetah
compression function is then defined by the following pseudo-code:

CheetahCompression(IntermediateHashValue, MessageBlock,
BlockCounter) {

InternalState = IntermediateHashValue + BlockCounter;
ExpandedBlock = MessageExpansion(MessageBlock);
for(i=1; i<= Nr; i++)
{

InternalState +=RoundBlock(ExpandedBlock,i);
InternalState = InternalRound(InternalState);

}
return InternalState + BlockCounter;

}

· · ·

···
Internal
state

Expanded
block

Salt

Message
block

Block
counter

Block
counter

Figure 2: The outline of the compression function.

The block counter B is treated as an 8-byte vector in the big-endian model and is xored to the
first 8 bytes of the IntermediateHashValue IV :

IVj ← IVj +Bj , 0 ≤ j ≤ 7.

The block counter is also added at the end of the compression function in the same way.
The procedures MessageExpansion and InternalRound are determined below for every version

of Cheetah.

4

1.3.1 Cheetah-224 and Cheetah-256

The Cheetah-224 and Cheetah-256 use the same compression function. The 128-byte message block
is expanded to a 512-byte block. The internal state is of size 32 bytes and is iterated for 16 rounds.

Message Schedule. The MessageExpansion procedure is a Rijndael-like transformation, which
is defined in pseudocode as follows:

MessageExpansion(byte MessageBlock[128]) {
byte ExpandedBlock[512];
ExpandedBlock[0..127] = MessageBlock;
for(i=1; i<=3; i++)
{

SubBytes(MessageBlock);
ShiftRows8(MessageBlock);
MixColumn8(MessageBlock);
AddRoundConstant(MessageBlock,i);
ExpandedBlock[128*i..128*i+127] = MessageBlock;

}
}

MessageBlock is treated as a byte array of size 8× 16:

m0,0 m0,1 · · · m0,15

m1,0 m1,1 · · · m1,15

. .
m7,0 m7,1 · · · m7,15

The original 128-byte vector (v0, v1, . . . , v127) is arranged into the array using the following rule1:
mi,j = v8∗i+7−j (see).

· · ·

· · ·

0

1

6

7 15

14

8

9

2

3

10

11

4

5

12

13

16

17

18

19

20

21

22

23

120

121

122

123

124

125

126

127

0

1

2 3 4 5 6 · · ·7 127

Message to be Hashed

· · · · · ·

Message Block

Figure 3: Byte arrangement.
1This arrangement is optimized for the little-endian architecture.

5

The SubBytes transformation is the byte-wise SubBytes transformation used in Rijndael:

S(X1X2) = Y

S :

X1\X2 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Here and later the values are given in the hexadecimal representation.
The ShiftRows8 operation processes each row of the MessageBlock array independently. A row

is cyclically shifted to the left over the offset with respect to the row index:

mnew
i,j ← mi,(j+ci)%16.

Row index Offset
i ci
0 0
1 1
2 2
3 3
4 5
5 6
6 7
7 8

The MixColumn8 operation processes each column of the the MessageBlock array indepen-
dently. A column is treated as an 8-element vector m over GF(28) and is multiplied by the
following matrix over GF(28):

mnew ← Am; A =

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

.

The multiplication is performed in GF(28).
The AddRoundConstant operation adds a 32-bit constant to the message block. The constant

is a function of the round index r:

mi,0+ = S[4 ∗ r + i], 0 ≤ i ≤ 3,

6

where S stands for the S-box.
The RoundBlock operation selects a 32-byte block from the ExpandedBlock = (E0, E1, E2, E3).

Define the round index r as r = 4l + m, 0 ≤ l,m ≤ 3. Then the selected block is the 4 × 8 byte
array Mr, that is defined as follows:

Mr = (mi,j)4×8, El = (ei,j)8×16; mi,j = e4∗(m%2)+i,4∗(m/2)+j .

This selection is illustrated in Figure 4.

ExpandedBlock

E[0] E[3]E[1] E[2]

E[l]:
M [4r] M [4r + 2]

M [4r + 3]M [4r + 1]

Figure 4: Composition of the expanded message.

The selected block is bytewise xored to the InternalState:

anew
i,j ← ai,j +mi,j .

Internal round. The InternalRound transformation is actually the Rijndael round as it would be
used with 32-byte block. It consists of three operations: SubBytes, ShiftRows4, and MixColumn4.

InternalRound(byte InternalState[256]) {
SubBytes(InternalState);
ShiftRows4(InternalState);
MixColumn4(InternalState);

}

The SubBytes operation has already been defined above. Both the ShiftRows4 and MixCol-
umn4 operations treat the InternalState as a byte array of size 4× 8, with 4 rows and 8 columns:

a0,0 a0,1 · · · a0,7

a1,0 a1,1 · · · a1,7

a2,0 a2,1 · · · a2,7

a3,0 a3,1 · · · a3,7

The original 32-byte vector (v0, v1, . . . , v31) is arranged into the array using the following rule:
ai,j = v4∗i+3−j .

ShiftRows4 cyclically shifts each row with respect to the following offset table:

Row index Offset
i ci
0 0
1 1
2 3
3 4

Thus the ShiftRows4 operation can be expressed as follows:

anew
i,j ← ai,(j+ci)%4.

7

The MixColumn4 transformation treats each column as a 4-element vector a over GF(28) and
multiplies it by the following matrix:

B =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

Thus MixColumn4 can be expressed via the following formulae:

anew ← Ba.

Output. The output 32-byte vector (v0, v1, . . . , v31) is derived from the internal state using the
following rule: vi = ai/4, 3−i%4.

1.3.2 Cheetah-384 and Cheetah-512

The Cheetah-384 and Cheetah-512 use the same compression function. The 128-byte message
block is expanded to a 1024-byte block. The internal state is of size 64 bytes and is iterated for
12 rounds.

Message Schedule. The MessageExpansion procedure is similar to that of Cheetah-224 and
Cheetah-256. 5 rounds are required to get the blocks that are xored to the internal state.

MessageExpansion(byte MessageBlock[128]) {
byte ExpandedBlock[768];
ExpandedBlock[0..127] = MessageBlock;
for(i=1; i<=5; i++)
{

SubBytes(MessageBlock);
ShiftRows8(MessageBlock);
MixColumn8(MessageBlock);
AddRoundConstant(MessageBlock,i);
ExpandedBlock[128*i..128*i+127] = MessageBlock;

}
}

The RoundBlock operation selects a 64-byte block from ExpandedBlock. Define the round
index r as r = 2l+m, 0 ≤ l ≤ 2, 0 ≤ m ≤ 1. Then the selected block is the 8× 8 byte array Mr,
that is defined as follows:

Mr = (mi,j)8×8, El = (ei,j)8×16; mi,j = e8∗m+i,j .

Internal round. The InternalRound transformation in Cheetah-384 and Cheetah-512 differs
from that of smaller versions. Its operations resemble the MessageExpansion procedure, but the
parameters are different:

InternalRound(byte InternalState[512]) {
SubBytes(InternalState);
ShiftRows64(InternalState);
MixColumn64(InternalState);

}

8

All the transformations treat the input as a byte array of size 8× 8:

a0,0 a1,0 · · · a7,0

a0,1 a1,1 · · · a7,1

. .
a0,7 a1,7 · · · a7,7

The original 64-byte vector (v0, v1, . . . , v63) is arranged to the array using the following rule:
ai,j = v8∗i+7−j .

The offset table of the ShiftRows64 transformation:

Row index Offset
i ci
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

The matrix of the MixColumn64 transformation:

A =

01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02
02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01

.

Output. The output 64-byte vector (v0, v1, . . . , v64) is derived from the internal state using the
following rule: vi = ai/8, 7−i%8.

1.4 Cheetah as PRF and MAC

The Cheetah hash functions are suitable for the construction of HMAC [14]:

HMACK(m) = h
(
(K + c1)||h((K + c2)||m)

)
,

where K is the key, m is the message to be hashed, h is the Cheetah hash function, c1 =
0x5c5c . . . 5c, c2 = 0x3636 . . . 36.

Cheetah can be used as a base of pseudo-random function (PRF) under different constructions,
e.g., as HMAC-PRF.

1.5 Other digest sizes

The output of the Cheetah hash functions may be truncated to any digest size up to 512 bits
though versions with digests smaller than of 160 bits can be broken by brute-force and thus not
recommended. Thus we propose to truncate the output of Cheetah-256 in order to get digests
from 160 to 256 bits or truncate the output of Cheetah-512 to get digests from 257 to 512 bits.

9

2 Design rationale

2.1 Hash function

The Cheetah design is the improved Merkle-Damgard construction [6, 16], which is now resistant
to the generic attacks that appeared recently. The countermeasures we use have been summarized
in a recently proposed HAIFA framework [2]. Salt is used to prevent generic attacks mounted
off-line. As a result, the attacks on real applications that require a lot of precomputations have
to be mounted only after the salt has been chosen by a user.

Since salt can be chosen independently of the message it should be carefully mixed with the
hash value and the ”salt schedule” must not be exploited. Thus we decided to insert salt to each
message block so that message and salt are treated in the same way, and the analysis becomes
easier.

We also added the permutation before the last message block is processed in order to prevent
length-extension attacks (see Section 3).

2.2 Compression function

The design of the Cheetah compression function is inspired by AES [5]. We use the standard
Davies-Meyer approach [19] to build a compression function from a block cipher: the key becomes
the message, the plaintext is the IV, the ciphertext is the hash value. The feedforward operation
is also applied. In order to fit the digest length the internal state has been enlarged. The size of
the internal state is now 256 or 512 bits with respect to the desired digest size.

The original key schedule of Rijndael [5], which might become the message schedule in the
Rijndael-based compression function, seems to be rather weak for our purpose. We made a modified
message schedule somewhat similar to that of Rijndael so that diffusion is quite fast and trails with
small number of byte differences are impossible (see the next section). However, the performance
would substantially drop if a message block were of the same size as the internal state. That is
why we use a larger message block.

Now we explain this in more details. The internal state is chosen as a multiple of 256 bits
such that it can be used directly as the resulting hash value or should be truncated. The message
block is a 1024-bit state. The smaller message block would reduce the speed, the bigger one might
require tables that would not fit the first-level cache of some CPU.

Since the internal state is bigger than that of AES more rounds are required for good diffusion.
The exact number of rounds has been determined by the message schedule. The message schedule
should provide full diffusion: difference in one byte in the message block should affect all bytes in
the last block of the expanded message. This requires 3 rounds of message schedule. Thus 4096
bits should be added to the internal state, which is of size 256 bit for Cheetah-224 and Cheetah-
256. As a result, 16 rounds are required. The Cheetah-384 and Cheetah-512 versions have more
thorough message schedule and faster diffusion so fewer rounds are enough. We use 12 rounds.

2.2.1 Round primitives

Irreducible polynomial. To the best of our knowledge there is no attack motivated by the
choice of an irreducible polynomial used for creating the Galois field. The polynomial defined in
(1) was used in the design of Rijndael [5].

ShiftRows offsets. When a state is treated as a matrix with 4 rows and 8 columns we use the
offset values defined in the s pecification of Rijndael, which provide the best diffusion for such a
matrix [5]. When a state is represented by a matrix with 8 rows and 8 or 16 columns we use the
offset values which provide full diffusion after 3 rounds.

Diffusion matrices. In order to get the best possible diffusion we use MDS matrices, which
provide the maximum branch number. Although the choice of the matrix does not influence

10

the software implementation on a PC2, it is of importance on low-cost platforms. We used two
additional criteria: the number of ones and the number of distinct elements in the matrix. These
criteria affect the number of XOR operations and table lookups in the implementation on, e.g.,
8-bit platforms [10].

The 4 × 4 matrix follows the design of Rijndael. The 8 × 8 matrix was first proposed by the
designers of Grindahl [13]. The latter matrix is optimal in terms of the number of ones (24) and
close to optimal in terms of the number of distinct elements (6). For more details we refer to [10].

Message schedule. We avoided possible weaknesses of the Rijndael-like key schedule by the
use of a block cipher for the message expansion. Although three rounds provide full diffusion the
versions Cheetah-384 and Cheetah-512 have more message rounds in order to make 12 message
injections to the internal state.

We also a bit modified the 8 × 8 matrix for the message schedule in order to avoid possible
attacks based on their identity. The MixColumn matrix used in the message schedule is obtained
by that of Cheetah-512 internal transformation by swapping the rows.

2.3 Number of rounds as tunable parameter

Although we fix the number of internal rounds for all the versions of Cheetah, it can be changed in
order to get a better security or performance. While we do not expect that the current versions are
weaker than versions with more rounds, reduced-round versions may suffer from attacks. However,
we believe that Cheetah-224 and Cheetah-256 with 12 rounds are as strong as Cheetah-256 truncated
to 160 bits. We also believe that Cheetah-384 and Cheetah-512 with 10 rounds are as strong as
Cheetah-256. We do not recommend to reduce the number of rounds further because Rijndael-
specific properties (such as the Square property) might be exploited for theoretical attacks.

3 Resistance to attacks

3.1 Generic attacks

3.1.1 Herding attacks

The herding attacks were proposed by Kelsey and Kohno [11]. The attacker presents a hash value
before she gets the information that is converted to the hash value. After the information is known
she seeks a ”garbage” string that should be added so that the resulting hash value coincides with
the declared one. The amount of strings to be tried can be significantly reduced if the hash value
is a kind of a multicollision: 2t different IVs can be ”herded” to the hash value under appropriate
messages. If the multicollision is organized in a form of so called diamond structure, the whole
attack costs less than the exhaustive search.

If an application uses salt then the attack requires the salt value to build the diamond structure.
If salt is at least an n/2-bit value (n — size of the internal state) there is no benefit from trying
all possible salts.

We also claim that the diamond structure can not be easily rebuilt for another salt value. This
is derived from the fact that there is no direct evidence how to build pseudo-collisions with fixed
IV and random message and salt.

3.1.2 Fast second preimage attack

A generic second preimage attack on the Merkle-Damgard construction was proposed by Kelsey
and Schneier [12]. The key idea is to use so called expandable messages. As soon as the attacker
finds two collided expandable messages of different length, collisions with messages of the same
size can be derived fast. As a result, the padding of the message with its length does not prevent
from second preimage attacks.

2An optimized implementation treats the whole round function as a sum of precomputed functions.

11

The attack is prevented in our construction by the use of the block counter in each iteration of
the compression function. Since the underlying Rijndael in the compression function is invertible,
the compression function as a function of block counter as an argument (the other input is con-
stant) is an injection. As a result, an expandable message becomes not-expandable unless more
sophisticated ideas are proposed. So far there is no evidence how to carry out the Kelsey-Schneier
attack to the construction with the block counter.

3.1.3 Multicollisions

The multicollision attacks were proposed by Joux [9]. The idea is to build collisions one after
another, which leads to 2k colliding messages after only k trials of the collision search. If a hash
function has an iterative structure, the attack can be always maintained. The actual complexity,
however, depends on the size of the internal state. Since the internal state of versions Cheetah-
256 and Cheetah-512 is of the same size as the corresponding digests these are susceptible to
multicollisions. However, the real threat is the use of multicollisions in the fast second preimage
search (see above), but such attack is prevented by the use of block counter.

3.1.4 Length-extension attacks

The well-known weakness of the original Merkle-Damgard construction is a length extension prop-
erty: if digests of messages M and M ′ collide than adding a common suffix also lead to a collision:
h(M ||M) = h(M ′||M) (see [1, 7] for more details). Even if we concatenate an original message
with its length (M ′ = M ||length(M)) the attack is valid because M ′ can be itself considered as
an extendable message.

We prevent this attack by applying a trivial permutation to the intermediate value before the
last message block is processed (the idea was proposed in [8]). If there is a collision after the last
iteration of the compression function then adding any data to the end of colliding message will
change the input of the compression function that led to a collision.

3.2 Attacks on the compression function

3.2.1 Collisions

Most collision attacks on dedicated hash functions are based on differential cryptanalysis, which
originates from block ciphers. The idea is to consider a differential trail (or path, or characteris-
tic) — a sequence of differences in the internal state throughout the iteration (or several iterations)
of the compression function. If the trail ends with zero difference then any message pair, such
that the two iterations provide the desired difference during the iteration, gives a collision. The
workload of the attack is usually determined by the round probabilities, or the proportion of
pairs which gives the output difference providing the input difference. The probabilities are partly
compensated by the freedom in the choice of a message pair.

Attacks on AES [5] and AES-based hash functions (such as Grindahl [18]) deal mostly with
XOR differences. The differences form either the 256-value set (all possible 8-bit values) or 2-value
set (either zero and non-zero difference or zero and any difference). We denote these attacks by
the attack with standard differentials and the attack with truncated differentials, respectively.

Now we claim that any differential trail in the Cheetah compression function has very low
probability and provide some observations in support of this claim.

Standard differentials. The only non-linear transformation in Cheetahis the SubBytes trans-
formation. The probability that a non-zero byte difference δ1 is converted by the S-box to a
difference δ2 is upper bounded by 2−6. Thus upper bound on the probability of a differential trail
is determined by the number of non-zero differences entering S-boxes, or the number of active
S-boxes.

The following observation gives us the minimum number of active S-boxes in a one-block
differential trail for Cheetah-256. Such a trail has zero difference in the input and in the output of

12

the compression function. Let us denote the number of non-zero differences in InternalState before
the SubBytes transformation by si, 1 ≤ i ≤ 16. The last si is equal to zero. Let us also denote
by ci the number of non-zero differences in InternalState after the MixColumn4 transformation.
The last ci is equal to 0 as well. Finally, we denote by mi the number of non-zero differences in
RoundBlock that is xored to InternalState in the beginning of a round. These differences either
cancel non-zero differences in InternalState or create them. Thus the following condition holds

si + ci−1 ≥ mi (2)

Due to the branch number of the MixColumn4 transformation ci is upper bounded: ci ≤ 4si.
Thus we obtain the following:

si + 4si−1 ≥ mi ⇒
∑

i

si +
∑

i

4si−1 ≥
∑

i

mi ⇒ S ≥ M

5
,

where S is the number of active S-boxes in the internal state of the compression function, and M
is the number of non-zero byte differences in ExpandedBlock.

Now we estimate the minimum number of non-zero byte differences in the message scheduling
only. First we note that this number is equal to the number of the active S-boxes in the message
scheduling extended to 4 rounds. Such a 4-round transformation is actually a Rijndael-like block
cipher, which can be investigated using the theory proposed by Daemen and Rijmen [4].

They estimated the minimum number of active S-boxes in 4 rounds of a Rijndael-like block
cipher. The sufficient condition to apply their theorem is that the ShiftRows8 should be diffusion
optimal: bytes from a single column should be distributed to different columns, which is the case.
Thus the number of active S-boxes can be estimated as the square of the MixColumn8 branch
number (9). As a result, any pair of different message blocks has difference in at least M = 81
bytes of ExpandedBlock. This implies the lower bound 17 for S.

Thus we obtain the following proposition.

Proposition 1. Any 1-block collision trail of Cheetah-224 and Cheetah-256 has at least 17 active
S-boxes in the internal state.

Though any real trail with only 17 active S-boxes would probably lead to a collision attack, we
expect that the values of M close to minimal do not give actual collision trails due to the following
reasons:

• Small number of active S-boxes in the internal state implicitly assumes many local collisions;

• The distribution of non-zero differences in the message scheduling is not suitable for local
collisions due to high diffusion;

• The MixColumn matrix in the message scheduling differs from that of the internal transfor-
mation so, e.g., 4-byte difference collapse to 1-byte difference may only happen in one of the
two transformations.

Truncated differentials. The complexity of collision search with truncated differentials is es-
timated in a different way. Recall that we deal with two types of byte differences: zero difference
and non-zero difference.

Consider such a trail. While the SubBytes transformation keeps these values unchanged the
additions can modify them. More precisely, addition cancels the non-zero difference with proba-
bility 2−8. Every zero difference in an active column after the MixColumn transformation costs
the same. The multiple of these probabilities gives the trail probability, which can be treated in
several ways with respect to the type of the attack. Generally, the lower the probability is the
harder the attack is. Thus we try to compute an upper bound on the probability, or the lower
bound on the byte weight — the number of non-deterministic non-zero to zero transformations.

Let us estimate first the round weight pi — the number of the zero differences in the internal
state that are the result of linear transformation of non-zero differences. Here i stands for the

13

RoundBlock

new zeros

MixColumn4
ShiftRows4
SubBytes

RoundBlock

· · ·

RoundBlock

MixColumn4
ShiftRows4
SubBytes

Figure 5: An example of an optimal subtrail.

round index. Two effects contribute to pi: zero differences after MixColumn and zero difference
due to the injection of RoundBlock.

The idea is to consider various possibilities for the number ki of active columns in the Mix-
Column transformation in round i. Indeed, non-active columns in round i + 1 are equivalent to
diagonal zeros after round i. If these diagonals intersect with active columns in round i then the
resulting number of zeros in the intersection contribute to pi. One can make the following table,
which lists the minimum number of pi as a function of ki and ki+1 for Cheetah-256:

ki\ki+1 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 4 3 2 1 0 0 0 0 0
2 8 6 4 3 2 1 0 0 0
3 12 9 7 5 3 2 1 0 0
4 16 12 10 7 4 3 2 0 0
5 20 16 13 10 7 5 3 1 0
6 24 20 16 13 10 7 4 2 0
7 28 24 20 16 12 9 6 3 0
8 32 28 24 20 16 12 8 4 0

Table 1: Byte weight of round transformation with truncated differentials as a function of the
number of active columns (Cheetah-256).

Let us now estimate the probability of a k-round trail with truncated differentials. First, we
introduce the notion of a subtrail. A subtrail is a trail such that it covers only internal states, the
first and the last internal state have zero difference, and the other internal states have at least one
active column. Using Table 1 we obtain the lower bounds for subtrails. They are given in Table 2.

Rounds 2 3 4 5 6 7 8 9 10 11 12−
Weight 4 7 10 13 16 19 22 25 28 31 32

Table 2: Minimum subtrail weight for Cheetah-256.

One may notice that the weight of a k-round subtrail is bounded by 3k − 2. An example of
such subtrail is provided in Figure 5.

However, a good trail may be composed of several subtrails. More precisely, internal state may
have zero difference in the middle of the trail, not only at rims. It is unlikely that two such states
may appear consecutively due to good diffusion properties in message schedule. Assuming that
we obtain that a k-round trail has at least weight 2k.

In our observations we did not consider trails in message schedule. We expect that any full trail
(message schedule+internal transformation) has worse properties than the corresponding internal
trail due to the following:

• Trails in the message schedule are likely to have low probability;

14

• Good message trails may impose bad internal ones, and vice versa — due to different round
functions.

The same observations hold for Cheetah-384 and Cheetah-512 though weight values in Tables 1
and 2 are different (Table 3).

Rounds 2 3 4 5 6 7 8 9 10−
Weight 8 15 22 29 36 45 52 59 64

Table 3: Minimum subtrail weight for Cheetah-512.

Thus the weight of an k-round subtrail can be lower bounded by 7k − 6. An internal k-round
trail with no two consecutive zero-difference states has weight at least 4k.

3.2.2 Preimages and second preimages

Only few successful preimage attacks have been introduced so far, and most of them are specific for
a concrete compression function. Since the compression function of Cheetah is based on Rijndael,
the preimage search is equivalent to the key recovery attack on the corresponding block cipher
(adding feedforward does not make the attack significantly faster). Due to improved message
schedule and more rounds, we expect that Cheetah is resistant to preimage attacks as Rijndael is.
The same observation holds for second preimage attacks.

We also claim that the strong message schedule we use prevents from the attacks similar to
recent preimage attacks on SHA [3], where slow diffusion was exploited.

3.3 HMAC-PRF security

It is well known that the HMAC is a PRF if the underlying compression function is a PRF, and
the iterated hash function is weakly collision-resistant [1]. We claim that the Cheetah compression
function is a PRF since it is based on Rijndael, and there is no distinguishing attacks on Rijndael
with > 10 rounds. Secondly, the Cheetah compression function is considered weakly collision-
resistant since it is claimed to be collision-resistant (Section 3.2.1).

3.4 Randomized hashing attack

The randomized hashing attack is defined in [17] as follows. The attacker chooses a message,
M1. The specified construct is then used on M1 with a randomization value r1 that has been
randomly chosen without the attackers control after the attacker has supplied M1. Given r1, the
attacker then attempts to find a second message M2 and randomization value r2 that yield the
same randomized hash value.

The randomization value is actually the salt value in Cheetah. Thus the attack can be reformu-
lated as follows: the attacker choose a first message, then the first salt value is given, and he must
find another pair (message, salt) that yield the same hash value. Thus the attack is the second
preimage search for the hash digest obtained after the first pair is defined. Since we expect that
the compression function is resistant to second preimage attack for any hashed message we claim
that the Cheetah is resistant to the randomized hashing attack as well.

3.5 Security level

The claimed security level for Cheetah-N is outlined in Tables 4.

4 Advantages and limitations

We claim that Cheetah has the following advantages:

15

• It is fast and significantly faster than SHA-2.

• It is based on Rijndael so many tricks designed for implementations of Rijndael and AES can
be used for Cheetah.

• It supports salt and thus randomized hashing.

• Lower bounds for the differential trail parameters are given thus providing support for the
resistance of Cheetah to the most powerful collision attacks.

• Generic attacks on the Merkle-Damgard construction are prevented by using block counter
and salt.

However, we expect that Cheetah may have the following limitations in some applications:

• It is byte-oriented but the best speed is achieved on 32-bit architecture or more advanced
one.

• Cheetah-224 and Cheetah-384 have the same speed as Cheetah-256 and Cheetah-512, respec-
tively.

5 Software and hardware implementation

5.1 Software

Cheetahcan be seen as two instances of Rijndael running in parallel. The first instance, Rijndael-
256, is used in the compression function to update the state of the function, which is 4× 8 matrix
of bytes. The second instance, which transforms the much bigger matrix 8 × 16, is used for the
message expansion. Hence, for all of the transformations of Cheetah, software implementation
tricks of Rijndael can be used. It is well known that SubBytes, ShiftRows, and MixColumns can
be implemented as simple table lookups and xors. Let us give an estimate for the efficiency of
Cheetah-256. Later, an estimate for Cheetah-512 will be given. One round of the compression
function of Cheetah-256, which works with 4× 8 matrix, requires 32 table look-ups, and 32 xors.
Hence, the whole 16 rounds will take 512 table look-ups, and 512 xors. The message expansion,
on 32-bit platforms, needs 256 table look-ups and 224 xors for one round. In the compression
function, three rounds of this message expansion are required. Therefore, only for the message
expansion 768 table look-ups and 672 xors are needed. So for the whole compression function of
Cheetah-256, one needs 1280 table look-ups and 1184 xors. This effort is spent to process a 128
bytes of message. Let us try to compare the speed of Cheetah-256 with the speed of AES (Rijndael-
128). AES uses 4 table look-ups and 4 xors per column per round. Therefore for processing 16

Attack complexity Supporting
rationale

Digest size (bits) 224 256 384 512
HMAC-PRF distinguisher 2112 2128 2192 2256 Sec. 3.3
Randomized hashing attack 2224 2256 2384 2512 Sec. 3.4
Collision search 2112 2128 2192 2256 Sec. 3.2.1
Preimage search 2224 2256 2384 2512 Sec. 3.2.2
Second-preimage search for a
message shorter than 2k bits

2224 2256 2384 2512 Sec. 3.1.2,
Sec. 3.2.2

Length-extension attacks Invulnerable Sec. 3.1.4

Table 4: Security claims for Cheetah.

16

bytes, AES uses 160 table look-ups and 160 xors. For processing 128 bytes, AES requires 1200
table look-ups and 1200 xors. Hence, the speed of Cheetah and AES are almost the same.

The optimal implementation of Cheetah requires 4KB for the tables and 160 bytes for the
internal value and the message expansion. Hence, in total, it requires around 4 KB of memory.
Memory speed trade-offs are possible. Since the look-up tables are rotated versions of each other,
an implementation with only one table, and a total memory of around 1KB is achievable.

Cheetah-512. The longer digest functions are best implemented on 64-bit platforms. Optimal
implementation of Cheetah-512 requires 16KB for 8 look-up table with 2KB each. The same
trade-off is possible as for Cheetah-256. An implementation with only 2KB of memory is possible.

The summary of the Cheetah speed is given in Tables 5, 6, 7, and 8.

Platform: Intel Core 2 Duo 32-bit, 2.4 GHz, 2 GB RAM, Windows XP.

Standard Memory optimized
Digest size (bits) 224 256 384 512 256 512

One message digest 2464 2464 5472 5472 3520 7744
Algorithm setup 32 32 64 64 32 64

Table 5: Estimates on NIST Reference Platform (32 bit).

Platform: Intel Core 2 Duo 64-bit, 2.66 GHz, 4 GB RAM, Windows XP x64.

Standard Memory optimized
Digest size (bits) 224 256 384 512 256 512

One message digest 1744 1744 2736 2736 2464 3872
Algorithm setup 32 32 64 64 32 64

Table 6: Estimates on NIST Reference Platform (64 bit).

Platform: Atmel 8-bit AVR ATmega128, 16 MHz, 128Kbytes of flash program memory and 4K
SRAM.

Digest size (bits) 224 256 384 512
One message digest 16768 16768 26368 26368

Algorithm setup 32 32 64 64

Table 7: Estimates on 8-bit processors.

Digest size (bits) 224 256 384 512
32-bit 15.3 15.3 83.8 83.8
64-bit 10.5 10.5 15.6 15.6
8-bit 131 131 206 206

Table 8: Speed in cycles/byte (optimized implementation).

17

5.2 Hardware

Since there are many hardware architectures the gate complexity of crypto implementations varies
dramatically. Speak generally, there is a tradeoff between gate count and speed. Moreover, special
tricks can drastically reduce the gate complexity as compared to the reference implementation.
As a result, AES can be implemented in 106 gates as well as in 1.7 · 105 gates [15]. Taking the
latter result as a reference one, we can roughly estimate the hardware requirements for Cheetah.

Cheetah-256 has an internal state, which is twice bigger than that of AES-128. Providing
the number of rounds be equal to 16, we derive that the internal operations should require three
times bigger hardware implementation than those of AES. Analogously, the message expansion is
roughly equal in the number of operations to the sum of internal rounds so we estimate its gate
count as the same as of the latter one. Finally, we estimate that an implementation of Cheetah-512
on an ASIC platform [15] would require about 600, 000 gates.

The same analysis for Cheetah-512 gives an estimate of 900, 000 gates.

References

[1] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authen-
tication. In CRYPTO, pages 1–15, 1996.

[2] Eli Biham and Orr Dunkelman. A framework for iterative hash functions — HAIFA. Cryp-
tology ePrint Archive: Report 2007/278, 2007.

[3] Christophe De Cannière and Christian Rechberger. Preimages for reduced sha-0 and sha-1.
In CRYPTO, pages 179–202, 2008.

[4] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In IMA Int. Conf., pages
222–238, 2001.

[5] Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced Encryption
Standard. Springer, 2002.

[6] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO’89, volume 435 of LNCS,
pages 416–427. Springer, 1989.

[7] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, 2003.

[8] Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the merkle-damg̊ard
scheme with a permutation. In ASIACRYPT, pages 113–129, 2007.

[9] Antoine Joux. Multicollisions in iterated hash functions. Application to cascaded construc-
tions. In CRYPTO’04, volume 3152 of LNCS, pages 306–316. Springer, 2004.

[10] Pascal Junod and Serge Vaudenay. Perfect diffusion primitives for block ciphers. In Selected
Areas in Cryptography, pages 84–99, 2004.

[11] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus attack. In
EUROCRYPT’06, volume 4004 of LNCS, pages 183–200. Springer, 2006.

[12] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In EUROCRYPT’05, volume 3494 of LNCS, pages 474–490. Springer, 2005.

[13] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl hash functions.
In FSE’07, volume 4593 of LNCS, pages 39–57. Springer, 2007.

[14] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication,
Request for Comments (RFC 2104). Internet Activities Board, Internet Privacy Task Force,
1997.

18

[15] Henry Kuo and Ingrid Verbauwhede. Architectural optimization for a 1.82gbits/sec vlsi
implementation of the aes rijndael algorithm. In CHES, pages 51–64, 2001.

[16] Ralph C. Merkle. One way hash functions and DES. In CRYPTO’89, volume 435 of LNCS,
pages 428–446. Springer, 1989.

[17] National Institute of Standards and Technology. Announcing Request for Candidate Algorithm
Nominations for a New Cryptographic Hash Algorithm (SHA3) Family, volume 72, No. 212
of Federal Register. November 2007.

[18] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT’07, volume 4833 of LNCS, pages
551–567. Springer, 2007.

[19] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In CRYPTO’93, volume 558 of LNCS, pages 368–378. Springer, 1993.

19

	Specification
	Preliminaries
	Hash function
	Compression function
	Cheetah-224 and Cheetah-256
	Cheetah-384 and Cheetah-512

	Cheetah as PRF and MAC
	Other digest sizes

	Design rationale
	Hash function
	Compression function
	Round primitives

	Number of rounds as tunable parameter

	Resistance to attacks
	Generic attacks
	Herding attacks
	Fast second preimage attack
	Multicollisions
	Length-extension attacks

	Attacks on the compression function
	Collisions
	Preimages and second preimages

	HMAC-PRF security
	Randomized hashing attack
	Security level

	Advantages and limitations
	Software and hardware implementation
	Software
	Hardware

