
SHA-3 Submission
Algorithm Name: ECOH (Elliptic Curve Only Hash)
Principal Submitter: Daniel R. L. Brown
Email: dbrown@certicom.com
Telephone: 905-826-8353
Fax: 905-507-4230
Organization: Certicom Corporation
Street Address: 5520 Explorer Drive
City: Mississauga
Province: Ontario
Country: Canada
Postal Code: L4W 5L1
Auxiliary Submitters: Adrian Antipa, Matt Campagna, Rene Struik
Inventors: Daniel R. L. Brown, Matt Campagna, Rene Struik
Owner: Certicom Corporation

Signature:



ECOH: the Elliptic Curve Only Hash

Daniel R. L. Brown

October 30, 2008

Contents

1 Introduction 1
1.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 A More Cautious Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Glossary 3

3 Specification 6
3.1 ECOH-224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 ECOH-256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 ECOH-384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 ECOH-512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Efficiency Analysis 11
4.1 Reference Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Optimized Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Assembly Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Simultaneous Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 AVX instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7 Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Generalization of ECOH 14
5.1 Generalized ECOH Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Generalized ECOH Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.5 Tailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.6 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.7 Recovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.8 Summing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



ECOH

5.2.9 Converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.10 Multiplying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.11 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.12 Converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.13 Selecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.14 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Suggested alternative values of parameters . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Curves for deterministic runtime . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Inverted ECOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Incremental mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Security 23
6.1 Collision Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Birthday Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.2 Semaev Summation Polynomial Attack . . . . . . . . . . . . . . . . . . . . . 24
6.1.3 Shifted collision attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.4 Truncation attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Second Preimage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.1 Exhaustive search for second preimages . . . . . . . . . . . . . . . . . . . . . 26
6.2.2 Wagner’s Generalized Birthday Attack . . . . . . . . . . . . . . . . . . . . . . 27
6.2.3 Semaev summation polynomial second preimages . . . . . . . . . . . . . . . . 27

6.3 Preimage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.1 Exhaustive preimage search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Inverting ECOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Relative Preimage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.1 Exhaustive search for preimages . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Single block inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.5 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Side Channel Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.7 Denial of Service Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Applications 32
7.1 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Message Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Pseudorandom Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Key Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Randomized Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A Heuristic Security Arguments 35
A.1 Collision Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Second Preimage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Preimage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.4 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



ECOH LIST OF TABLES

B Examples 38
B.1 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Examples of Intermediate Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.2.1 ECOH224 Example (one-block Message) . . . . . . . . . . . . . . . . . . . . . 38
B.2.2 ECOH224 Example (two-block Message) . . . . . . . . . . . . . . . . . . . . . 41
B.2.3 ECOH256 Example (one-block Message) . . . . . . . . . . . . . . . . . . . . . 44
B.2.4 ECOH256 Example (two-block Message) . . . . . . . . . . . . . . . . . . . . . 46
B.2.5 ECOH384 Example (one-block Message) . . . . . . . . . . . . . . . . . . . . . 49
B.2.6 ECOH384 Example (two-block Message) . . . . . . . . . . . . . . . . . . . . . 51
B.2.7 ECOH512 Example (one-block Message) . . . . . . . . . . . . . . . . . . . . . 54
B.2.8 ECOH512 Example (two-block Message) . . . . . . . . . . . . . . . . . . . . . 57

List of Tables

1 Common variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Common operators and constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Finite field representation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Parameters for unified ECOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Unified Pseudocode for ECOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Pseudocode for ECOH-224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Pseudocode for ECOH-256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Pseudocode for ECOH-384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 Pseudocode for ECOH-512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 ECOH-224 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 ECOH-256 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12 ECOH-384 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13 ECOH-512 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

§LIST OF TABLES iv



ECOH

1 Introduction

The elliptic curve only hash (ECOH) algorithm is a submission to NIST’s SHA-3 competition. The
ECOH algorithm is based on the MuHASH algorithm of Bellare and Micciancio [1].

1.1 Efficiency

For long messages, the ECOH algorithm is about a thousand times slower than SHA-1. Neverthe-
less, it does have some potential performance advantages over SHA-1.

• Incrementality: the ECOH hash of a message can be updated quickly, given a small change
in the message and an intermediate value in the ECOH computation. Note MuHASH also
has this property, but without requiring an intermediate value, in which case, the property
can sometimes lead to an attack.

• Parallelizability: different parts of the ECOH computation can be done in parallel, because
they do not depend on each other. Multiple CPUs are becoming common in personal com-
puters.

• Carryless multiplication: ECOH works over binary fields, which are relatively slow on the
CPU currently used in desktop because these CPUs only implement multiplication with carry
operations. Intel recently announced that the upcoming AVX instructions will include carry-
less multiply operation.

Given the developments in desktop hardware towards parallelization and carryless multiplication,
ECOH may in a few years be as fast as SHA-1 for long messages.

For short messages, ECOH is relatively slower, unless extensive tables are used. These tables
are the same as one would use to speed up elliptic curve key generation (which is use in elliptic
curve key agreement and signature generation).

1.2 Security

MuHASH, upon which ECOH is based, has not been successfully attacked. The closest attack
has been Wagner’s attack [12] on AdHASH, a hash function faster and simpler than MuHASH,
which Bellare and Micciancio [1] introduced in the same paper as MuHASH. Assuming MuHASH
continues to resist attacks, it would seem that attack against ECOH may need to exploit the
difference between ECOH and MuHASH. The main difference is that where MuHASH applies a
random oracle, ECOH applies a padding function.

Assuming random oracles, Bellare and Micciancio [1] proved that finding a collision in MuHASH
implies solving the discrete logarithm problem. For practicality, ECOH does not use a random ora-
cle. It is shown here that finding low degree solutions to certain multivariate polynomial equations
derived from Semaev’s summation polynomials [9] allows one to find collisions in ECOH. Therefore,
the security of ECOH is not directly related to the discrete logarithm problem.

Semaev [10] first formulated these summation polynomial equations over binary field and pro-
posed the problem of finding low degree solutions of them, in the context of the elliptic curve
discrete logarithm over a Koblitz elliptic curve. Gaudry [4] used summation polynomials to the
elliptic curve discrete logarithm problem over a cubic extension field in time faster than square root

§1 INTRODUCTION 1



ECOH 1.3 A More Cautious Variant

of the curve size asymptotically. Note that Gaudry used solutions belonging a subfield, not merely
low degree solutions in a binary field.

Therefore, Semaev’s problem for summation polynomial fields has not so far been a given effi-
cient algorithm to solve. Semaev [10] notes that Coppersmith’s algorithm does something analogous
for prime fields: it finds small solutions to certain small degree polynomials, though not necessarily
summation polynomials. That Gaudry successfully applied to Semaev’s idea to attack the elliptic
curve discrete logarithm over cubic extension fields could be interpreted to mean that the original
problem of applying them to Koblitz curves and other prime degree binary fields did not admit so
easy a solution. Nevertheless, it is fair to say that this problem has not been nearly as well-studied
as the elliptic curve discrete logarithm problem.

1.3 A More Cautious Variant

In a generalization of ECOH given here, an option is available that interferes with the formulation
of the summation polynomial in terms of low degree solutions. Rather, the solutions instead must
carry some intrinsic redundancy not easily expressible in the underlying field. The aim is to render
the equations non-algebraic. Such enhancements may slow ECOH somewhat. Also, although these
enhancements are simple enough to state, the effect upon security analysis is more complicated.
Sometimes such an apparent complexity in the security analysis adds to security, but occasionally
it does not, that is, it is sometimes does not add any computational complexity for the adversary.

§1 INTRODUCTION 2
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H Output of the hash function, a bit string
n Length of H, in bits
M The input message to be hashed, a bit string

mlen Length of M , in bits
m Length in bits of finite field elements
q Field size (note q = 2m)

blen Length of message blocks
ilen Length of index blocks
clen Length of counter blocks

i Index of message blocks
j Number of zero bits used to pad
N Padded message (sometimes also order of G)
k Number of padded message blocks
E Elliptic curve, including finite field and its representation.
G A fixed point on the elliptic curve
N A bit string obtained by padding M to a length which is a multiple of blen.
Ni A substring of N of length blen.
Ii A bit string of length ilen representing integer i

Oi A bit string of length blen + ilen
Xi A bit string representing the x-coordinate of point
Pi An elliptic curve point
xi A finite field element, the x-coordinate of Pi

yi A finite field element, the y-coordinate of Pi

Q An elliptic curve point

Table 1: Common variables

2 Glossary

The elliptic curve operations used in ECOH are those used in FIPS 186-3 and [11]. Some familiarity
with either of these standards is assumed. In particular, familiarity with finite fields of characteristic
two is assumed and with elliptic curves defined over these fields, having equation of the form
y2 + xy = x3 + ax2 + b.

Table 1 defines the meaning of some common variables appearing in the specification of ECOH.
Table 2 defines some operators and constants appearing in this specification, but variable names
are not included.

Table 2: Common operators and constants

‖ Concatenation of bit strings. For example 0011101‖110110 =
0011101110110.

| Divisibility of integers or polynomials. For example, 2|4 and x|x2 + x are
true, but 2|3 is false.

⊕ Bit-wise exclusive of bit strings, which must be equal length. For example,
000111⊕ 110110 = 110001.

§2 GLOSSARY 3
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⊕k
i=0 Bit-wise exclusive of a sequence or array of bit strings. For example, if

B0 = 00, B1 = 01 and B2 = 11, then
⊕2

i=0 Bi = 00⊕ 01⊕ 11 = 10.
0j Bit string of length j consisting of all zero bits. For example, 07 = 0000000.
1 Bit string of length 1 consisting of a single one bit, or the integer, or finite

field element, or polynomial over a finite field.
O The point at infinity on an elliptic curve. Defined to be the identity element

of the elliptic curve group.
(,) Coordinates of a point. For example, (x, y) = (0, 1) is a point on the curve

y2 + xy = x3 + 1.
+ Integer addition, finite field addition, finite field polynomial addition, or

elliptic curve addition, depending on context. For example: 2 + 3 = 5;
x + x = 0; (0, 1) + (0, 1) = O.∑k

i=0 Addition of elliptic curve points indexed from i = 0 to i = k.
Integer multiplication, or finite field multiplication, polynomial multiplica-
tion, or elliptic curve scalar multiplication, depending on context. That is,
xy means the product of x and y. For numbers and multiletter variables,
parentheses are used or an explicit × may be used indicate multiplication.
For example, i(blen) is i times blen, and 7(11) = 77, and x(x + 1) = x2 + x,
and 2(0, 1) = O.

ab Integer exponentiation, finite field exponentiation, or polynomial exponen-
tiation, depending on the type of a. In all cases, b is non-negative integer.
For example, 23 = 8, and (x + 1)3 = x3 + 3x2 + 3x + 1.

/ Rational number division or finite field division or polynomial division. For
example, 6/2 = 3, 3/2 = 1.5, and (x2 + x)/(x + 1) = x.

a
b Alternative notation for division, that is, a/b.
b c bxc is largest integer not exceeding x. For example, b3/2c = 1 and b5c = 5.
d e dxe is smallest integer not less than x. For example, d3/2e = 2 and d5e = 5.
Fq Finite field with q elements.
〈 〉 〈G〉 is the cyclic subgroup of elliptic curve group generated consisting of all

elements nG for integers n.
Ai A sequence or array of bit strings or elliptic curve points, indexed by i, where

A is some variable name, which may also have a value when use alone. For
example, perhaps B0 = 000 and B1 = 110 and B2 = 010 could be a sequence
of bit strings, whereas B may also indicate 0001.

x(P ) The integer whose bit string representation, padded with sufficiently many
zeros on the left, equals the bit string representation of the x-coordinate of
the elliptic curve point P . An exceptional case is that x(O) is defined to be
0.

x mod m The remainder obtained when dividing x by m. When x and m are integers,
it is unique integer r such that 0 6 r < m and x = qm + r for some integer
q, which can also be expressed as x−mbx/mc.
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Finite field elements are represented as bit string using a polynomial basis representation. Ta-
ble 3 gives example fields, irreducible polynomials for fields, and example elements in the field. The
bit string representations of the field elements are given. Also given is the integer whose bit string
representation, when padded with sufficiently zeros on the left, equals the bit string representation
of the field element. Finally the hexadecimal representation is given, which is obtained by padding
the bit string on the left with zeros until the length is a multiple of 8, and then converting to
hexadecimal.

Field size 8 128
Irreducible polynomial t3 + t + 1 t7 + t + 1
Example field element t + 1 t4 + t3 + t
Bit string representation 011 0011010
Integer representation 3 26
Hexadecimal representation 03 1A

Table 3: Finite field representation example

§2 GLOSSARY 5
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3 Specification

The four ECOH algorithms have parameters as specified in Table 4. The four ECOH algorithms

Hash n E and G m blen ilen clen
ECOH-224 224 B-283 283 128 64 64
ECOH-256 256 B-283 283 128 64 64
ECOH-384 384 B-409 409 192 64 64
ECOH-512 512 B-571 571 256 128 128

Table 4: Parameters for unified ECOH

are specified by the pseudocode in Table 5 with the parameters above substituted as needed. The
maximum bit length of a message that can be hashed is 2ilen − 1. For convenience, separate
pseudocode is given for each of the four ECOH algorithms in Tables 6–9.

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by blen.

2. Parse N into blocks N0, . . . , Nk−1 each of length blen bits.

3. Let Oi = Ni‖Ii, where Ii is the ilen-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 Ni)‖Imlen where Imlen is the ilen-bit representation of the bit length
mlen of the message M .

5. Let Xi = (0m−(blen+ilen+clen)‖Oi‖0clen)⊕Ci where Ci is the bit string of length m rep-
resenting the smallest nonnegative integer c such that Xi represents the x-coordinate
xi of an element of 〈G〉.

6. Let Pi = (xi, yi) be such that the rightmost bit of yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the n-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2n.

Table 5: Unified Pseudocode for ECOH

Note that the four submitted ECOH algorithms are also instantiations of a generalized ECOH
algorithm (§5), for which certain values of the parameters (§5.1) are selected.

§3 SPECIFICATION 6
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3.1 ECOH-224

ECOH-224 uses the curve B-283, including generator point G, with parameters (blen, ilen, clen) =
(128, 64, 64).

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by 128.

2. Parse N into blocks N0, . . . , Nk−1 each of length 128 bits.

3. Let Oi = Ni‖Ii, where Ii is the 64-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 Ni)‖Imlen where Imlen is the 64-bit representation of the bit length
mlen of the message M .

5. Let Xi = (027‖Oi‖064) ⊕ Ci where Ci is the bit string of length 283 representing
the smallest nonnegative integer c such that Xi represents the x-coordinate xi of an
element of 〈G〉.

6. Let Pi = (xi, yi) be such that the rightmost bit of yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the 224-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2224.

Table 6: Pseudocode for ECOH-224
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3.2 ECOH-256

ECOH-256 uses the curve B-283, including generator point G, with parameters (blen, ilen, clen) =
(128, 64, 64).

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by 128.

2. Parse N into blocks N0, . . . , Nk−1 each of length 128 bits.

3. Let Oi = Ni‖Ii, where Ii is the 64-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 )Ni‖Imlen where Imlen is the 64-bit representation of the bit length
mlen of the message M .

5. Let Xi = (027‖Oi‖064) ⊕ Ci where Ci is the bit string of length 283 representing
the smallest nonnegative integer c such that Xi represents the x-coordinate xi of an
element of 〈G〉.

6. Let Pi = (xi, yi) be such that the rightmost bit of yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the 256-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2256.

Table 7: Pseudocode for ECOH-256
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3.3 ECOH-384

ECOH-384 uses the the curve B-409, including generator point G, with parameters (blen, ilen, clen) =
(192, 64, 64).

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by 192.

2. Parse N into blocks N0, . . . , Nk−1 each of length 192 bits.

3. Let Oi = Ni‖Ii, where Ii is the 64-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 )Ni‖Imlen where Imlen is the 64-bit representation of the bit length
mlen of the message M .

5. Let Xi = (089‖Oi‖064) ⊕ Ci where Ci is the bit string of length 409 representing
the smallest nonnegative integer c such that Xi represents the x-coordinate xi of an
element of 〈G〉.

6. Let Pi = (xi, yi) be such that the rightmost bit of yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the 384-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2384.

Table 8: Pseudocode for ECOH-384
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3.4 ECOH-512

ECOH-512 uses the curve B-571, including generator point G, with parameters (blen, ilen, clen) =
(256, 128, 128). It can hash messages of bit length up to 2128 − 1.

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by 256.

2. Parse N into blocks N0, . . . , Nk−1 each of length 256 bits.

3. Let Oi = Ni‖Ii, where Ii is the 128-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 )Ni‖Imlen where Imlen is the 128-bit representation of the bit length
mlen of the message M .

5. Let Xi = (059‖Oi‖0128) ⊕ Ci where Ci is the bit string of length 571 representing
the smallest nonnegative integer c such that Xi represents the x-coordinate xi of an
element of 〈G〉.

6. Let Pi = (xi, yi) be such that the rightmost bit yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the 512-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2512.

Table 9: Pseudocode for ECOH-512
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4 Efficiency Analysis

In this section, the efficiency of ECOH is discussed by way of some estimates and experiments with
the submitted reference and optimized implementations.

4.1 Reference Implementation

The reference implementation uses well-known elliptic curve arithmetic algorithms as surveyed in
[7]. It is more than a thousand times slower than an implementation of SHA-1 on the same platform.

About three quarters of the time that the reference implementation requires to compute an
ECOH digest of a long message is spent computing inverses of elements in the field over which the
elliptic curve is defined.

On average, three inversions must be computed for each message block. Some of these inversions
are needed to search for a point on the curve corresponding to the message block. On average,
two inversions are needed to find this point. Once the point is found, it must be added into an
accumulator. The reference implementation uses affine coordinates, in which the addition formula
includes an inversion.

Affine coordinates were chosen over projective coordinates, because affine coordinates run faster
on current Intel processors. More specifically, in binary fields, the cost M of finite field multipli-
cation and the cost I of finite field inversion have a ratio I/M ≈ 7. The reason that projective
coordinates were not used is that, although their addition formula generally avoid an inversion,
they require many more multiplication operations, typically eight or more, which is more expensive
that an inversion operation in the reference implementation.

After inversions the bulk of the remaining computation time in the reference implementation
on long messages is spent performing finite field multiplication. Most of this time is spent on
binary polynomial multiplication, which is implemented using combing. The reference implemen-
tation spends relatively little time on modular reduction, polynomial addition, computation of the
trace and half-trace. Traces are implementation by examining fixed bits of the polynomial basis
representation. Half-traces are computed with table lookups and polynomial addition.

For short messages, the scalar multiplication in the postprocessing requires relatively more time.

4.2 Optimized Implementation

The optimized implementation is about three times faster than the reference implementation, on
the platforms in which it was tested. The optimized implementation is based on the reference
implementation with improvements made in certain functions.1 The main differences between
the reference and optimized implementation are in the algorithms and coding used for computing
inverses and field multiplication.

Inversion in the reference implementation is computed using a variant of the Euclidean algo-
rithm. This variant is tailored for binary fields in that a full polynomial division is not computed,
but rather only the degree of the quotient is computed. Inversion in the optimized implementation
uses a better algorithm, known as the almost inverse algorithm. Among other reasons, the almost
algorithm is faster because it does not compute a difference of degrees, but rather only does a

1Better optimization may have been possible starting from scratch rather than from the reference implementation.
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comparison of degrees. Use of a better inverse algorithm is a major part of why the optimized
implementation is faster.

Another aspect of the optimized implementation is more careful field specific coding for the
both the field inversion and multiplication operations.

Note the optimization in the optimized implementation focused on long messages. In particular,
acceleration of the scalar multiplication using larger tables was not done.

4.3 Assembly Optimization

Hardware specific assembly optimization can sometimes result in more efficient executables than
compiled C source code.

The submitted reference and optimized implementations do not use any specific assembly. That
is, they are written entirely on C, and rely entirely on the compiler for assembling.

Hand assembly for specific platforms should make the ECOH faster. It is difficult to estimate
the speedup, because it depends on both the compiler and the hardware.

4.4 Simultaneous Inversion

Simultaneous inversion, introduced by Peter Montgomery, trades k inversions for 1 inversion and
3(k − 1) multiplications. Considering that I/M > 3 and that most of the time for performing
ECOH is spent on inversion, simultaneous inversion should yield a speed up for ECOH.

Simultaneous inversion is not implemented in the submission. The theoretical benefit of simul-
taneous inversion, for long messages, is to reduce one unit of time to 3

I/M
3
4 + 1

4 , assuming fraction
of the time spent on inversion if 3

4 and that k, the number of inversion done simultaneously, is
chosen to be sufficiently large. Taking I/M = 7 for the reference implementation, make ECOH a
little less than twice as fast. That said, however, simultaneous inversion has some overhead costs,
of determining which inversion to do simultaneously.

For the optimized implementation, estimate indicate I/M ≈ 2, which may be artificially low,
perhaps due to inaccuracy of the timing methods we used, or because of the greater effort spent
on reducing I compared to M . With such a low I/M ratio, simultaneous inversion is not expect
to improve the optimized implementation, at least as is.

4.5 AVX instructions

Intel recently announced Advanced Vector Extensions (AVX), which are a new set of instructions
to be added to its upcoming processors. Included in AVX is an instruction PCLMULQDQ which
may be useful for making elliptic curve cryptography over binary fields more efficient.

Gueron and Kounavis [6] suggest an approximate 21 or 66 times speed up of scalar multiplica-
tion. To get this, they assumed a reasonable cost of the PCLMULQDQ instruction. They compare
projective coordinates implemented with PCLMULQDQ to affine coordinates implemented with
combing multiplication and a variant of the Euclidean algorithm.

Since projective coordinates replace one inversion with 8 multiplies one may infer that they
find I/M ≈ (8)(21) = 168. This is clearly a crude estimate, but it does strongly suggest that with
AVX, the ratio I/M will become considerably larger.

With so large a value I/M , it makes much more sense to use projective coordinates and simul-
taneous inversion.
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Given the estimates above, ECOH would be 25 times faster than the reference implementation
if implemented with AVX and simultaneous inversion.

4.6 Parallelization

The ECOH algorithm is parallelizable in the following ways:

• the search and recovery of the term points may be done in parallel,

• computing the checksum may be done in parallel,

• computing the total point from the term points may be done in parallel.

• computing the scalar multiply may be done in parallel, if a sufficiently large table is used.

The amount of parallelization possible in ECOH depends on the hardware used and on the message
size.

It should be noted that simultaneous inversion requires a serial sequence of multiplication opera-
tions. For short messages, therefore, it may be possible to benefit from both simultaneous inversion
and parallelization of the point searching, recovery and additions. For longer messages, though
grouping a moderate number of simultaneous inversion together should capture almost all of the
benefit of simultaneous inversion. Since there will be many of these grouped inversion, the benefits
of parallelization can be obtained by doing these multiple simultaneous inversions in parallel.

For example, if the hardware permits 40 parallel operations and quick AVX binary polynomial
multiplication operations, then for sufficiently long messages where simultaneous inversions gives
25 times speedup over the reference implementation, then the parallelism will give another 40 times
speedup, for a final speedup of 1000 times. In this case, ECOH would have a speed comparable to
SHA-1.

4.7 Incrementality

In situations where small changes to the message are likely to be needed for hashing, specifically
in-place substitution of bits, or truncation of the final bits, or extension of further bits, then the
following incrementality feature of ECOH may useful.

The incremental functionality was not included in the reference or optimized implementation.
We estimate that for message changes involving fewer than 0.1% of the blocks, then using an
incremental functionality to recompute the hash would be faster than computing the SHA-1. If
incrementality is combined AVX instruction (and maybe with simultaneous inversion), or paral-
lelization, then the proportion of changed blocks can be higher.
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5 Generalization of ECOH

This section is a generalization of the ECOH algorithm. In the event that NIST finds that ECOH
is suitable for SHA-3 except for some minor deficiencies, then it is suggested that some version of
the generalized ECOH specified in this section be considered.

5.1 Generalized ECOH Parameters

Generalized ECOH has the parameters list below. Parameters listed as required are needed to
comply with certain SHA-3 requirements, or to ensure security, or at least to provide some concrete
definition. Parameters listed as recommended include those used in the submitted version of ECOH,
as specified in §3. Many of the parameters can be made higher to strengthen the security, which
may be desirable for SHA-3.

Conversely, lowering some of the parameters, especially below the recommended values, should
result in a weakened version of ECOH, whose security is easier to ascertain. For example, using
a small elliptic curve may make finding a collision possible. The computational cost for finding
collisions in such weakened version of ECOH may be interpolated to estimate the computational
cost of finding a collision in the submitted version of ECOH or the generalized form of ECOH.

• Output length n bits.

– Required: n ∈ {224, 256, 384, 512}.

• Binary field degree m.

– Required: m > n.

– Recommended: m ∈ {283, 409, 571}

• Binary field representation: a bijection ρ : F2m → {0, 1}m.

– Recommended: polynomial basis representation,

– Recommended: left bits are highest degree bits,

– Recommended: minimal Hamming weight irreducible polynomial basis representation,

– Recommended: Representations given in FIPS 186-2 for B-283, B-409, B-571.

• Elliptic curve parameters a, b ∈ F2m .

– Recommended: the NIST curves B-283, B-409 and B-571, as appropriate with the other
parameters.

• Elliptic curve generator G ∈ E(F2m) (also known as base point).

– Required: the cyclic subgroup 〈G〉 generated by G of the elliptic curve E : y2 + xy =
x3+ax2+b must not be such that the discrete log problem in 〈G〉 is known to be solvable
with computation less than the equivalent 2n/2 elliptic curve operations.

– Recommended: the value of G including B-283, B-409 and B-571, as appropriate with
other parameters.
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• Elliptic curve subgroup index h.

– Requirement: the order of G is |E(F2m)|/h.

– Recommended: |E(F2m)|/h is prime. (In which case, h is also called the cofactor.)

– Recommended: h = 2.

• Message block size blen.

– Required: blen > 96.

– Recommended: blen = 128 if n ∈ {224, 256}, blen = 192 if n = 384, blen = 256 if
n = 512.

– Recommended: blen > 128.

– Recommended: 32|blen.

• Index block size ilen.

– Required: ilen > 64.

– Recommended: ilen = 64 unless n = 512, then ilen = 128.

– Recommended: 32|ilen.

• Counter block size clen.

– Required: clen > 64.

– Recommended: clen = 64, unless n = 512, then clen = 128.

– Recommended: 32|clen.

• Bits dropped before integer conversion: subset of {0, 1, . . . ,m − 1}, corresponding to radix
significance.

– Recommended: (for use with polynomial representation) {0}, where 0 indicates the
degree of the bit (so this the rightmost or last bit). (If the bits are counted from the
left, then this is bit m− 1.)

• Unsigned integer encoding:

– Required: as bit strings of a given length, with lower radix bits on the right.

– Recommended: consistency with the polynomial basis representation, so the higher de-
gree bits correspond to higher radix bits.

• Bits kept after integer conversion to hash output: subset of {0, 1, . . . ,m− 2}, corresponding
to radix significance.

– Recommended: the n least significant {0, 1, . . . , n− 1}.

• Shift factor β.

– Required: β ∈ {0, 1}.

§5 GENERALIZATION OF ECOH 15



ECOH 5.2 Generalized ECOH Operations

– Recommended: β = 1.

• Tail obfuscator ω.

– Required: ω ∈ {0, 1}.
– Required: if ω = 1, then blen > 128.

– Recommended: ω = 0.

• Encryptor flag ε.

– Required: ε ∈ {0, 1, 2, 3}.
– Recommended: ε = 0.

• Addition flag: α.

– Required: α ∈ {0, 1}.
– Recommended: α = 0.

5.2 Generalized ECOH Operations

In this section, the generalized ECOH algorithm is specified in small modular pieces. An outline
of the pieces is given below and grouped into phases in such a way to facilitate further discussion.

1. Input

2. Bit string preprocessing phase

(a) Padding

(b) Parsing

(c) Indexing

(d) Tailing

3. Elliptic curve preprocessing phase,

(a) Searching

(b) Recovering

4. Elliptic curve main summation phase

(a) Summing

5. Elliptic curve postprocessing phase

(a) Converting

(b) Multiplying

(c) Shifting

6. Bit string postprocessing phase

§5 GENERALIZATION OF ECOH 16



ECOH 5.2 Generalized ECOH Operations

(a) Converting
(b) Selecting

7. Output

5.2.1 Input

The input to ECOH is a message M , which is a bit string of arbitrary length. The length of M in
bits is denoted by mlen.

5.2.2 Padding

Message M is padded with a single 1 bit and then with the minimal number of 0 bits needed to
obtain a bit string whose length is a multiple of blen to obtain a bit string N that is the padded
version of the input bit string M . Using ‖ to indicate bit string concatenation, 0j to indicate a
string of length j all of whose bits are 0, and (a mod b) to indicate the remainder of a divided by
b, then the formula for N may also be expressed as:

N = M‖1‖0((−1−mlen) mod blen) (1)

Note that the length N as a bit string may be expressed as:

blen
⌈

1 + mlen
blen

⌉
(2)

where dxe indicates the smallest integer i > x. Let k =
⌈

1+mlen
blen

⌉
, so that the bit length of N is

k(blen). We may refer to k as the block count, if needed.

5.2.3 Parsing

The padded message N is parsed into k blocks, each a bit string of length blen bits. The blocks
are indicated as Ni where i is an integer and 0 6 i < k. Using concatenation notation ‖ we will
have that

N = N0‖N1‖ . . . ‖Nk−1. (3)

Using array indexing of bit strings, where B[j] is the bit of the bit string B at a distance of j bit
positions from the leftmost bits of B (so that B[0] is the left most bit, for example), then Ni may
be expressed as the unique bit string of length blen such that:

Ni[j] = N [j + i(blen)] (4)

for all integers j with 0 6 j < blen.

5.2.4 Indexing

Each parsed block Ni for integers 0 6 i < k is processed to obtain an indexed block Oi as follows

Oi = Ni‖Ii (5)

where Ii is the bit string of length ilen representing the unsigned integer i. We refer to Oi is a
body indexed block.
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5.2.5 Tailing

Let

Nk =
k−1⊕
i=0

Ni = N0 ⊕N1 ⊕ · · · ⊕Nk−1 (6)

where ⊕ indicates the bit-wise exclusive operation upon bit strings. Let

Ok = Nk‖Imlen (7)

where Imlen is the bit string of length ilen representing the length mlen of the original input message
M . Note well that Imlen 6= Ik (unless mlen = 1) so the index portion of Ok generally does not
represent the integer k, as one might erroneously assume if one just interpolated from the index
portions of the previous values Oi. In other words, the index portion of Ok is higher as an integer
by a factor of about blen than the index portion of Ok−1. We refer to Ok as the tail indexed block,
and to Nk as the checksum.

If ω = 1 (which requires blen > 127), then the leftmost 127 bits of Nk are not are zero, then
they are modified as follows. They are first converted to an integer w (which will necessarily be
nonzero). The polynomial f(x) ≡ xw mod x127 +x+1 is computed. This is a polynomial of degree
at most 126. This is converted to a bit string W of length 127 bits, where the leftmost bit is the
coefficient of x126 and so on. Then the leftmost 127 bits of Nk are replaced by W .

Indexed block refers to either a body indexed block or a tail indexed block.

5.2.6 Searching

For each indexed block Ni, the following loop is executed. An integer counter variable c is initialized
to 0. The variable c will be incremented at each stage of the loop. The following bit string length
m is initialized:

X = 0m−(blen+ilen+clen)‖Oi‖0clen (8)

At each iteration of the loop, the counter c is represented as a bit string C of length m bits. Then
the bit string

Xi,c = X ⊕ C (9)

is computed.
For values of ε 6= 0, the following extra transformation is performed on Xi,c.

• If ε = 1, then let t = blen + ilen + clen. The rightmost t bits Xi,c are represented as a finite
field F2t , using polynomial basis representation with the least lexicographically irreducible
polynomial. If this element is non-zero, then its inverse is computed and its bit string repre-
sentation replaces the rightmost t bits of Xi,c. Note that ε = 1 is not recommended as part of
the ECOH submission, though it may be considered for inclusion in SHA-3 as an extra safety
margin for making certain attacks appear harder.

• If ε = 2, then Xi,c is transformed as follows. As few bits as possible are discarded from the
left, so that the result has a length that is a multiple of 64 bits. Then AES key wrap is
applied, using the AES-128 with key of all zero bits. As few bits as possible are discarded
from the left so that that the length equals m. This is the transformed value of Xi,c. Note
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that ε = 2 is not suggested as part of the ECOH submission, though it may be considered for
an inclusion in SHA-3 as a safety margin for making certain attacks appear harder and for
making certain heuristic security arguments more plausible [2].

• If ε = 3, then Xi,c is transformed as follows. It is fed into another SHA-3 submitted hash
function. The resulting n bits then replace the rightmost n bits of the Xi,c. Note that ε = 3
is not suggested as part of the ECOH submission, though it may be considered for inclusion
in SHA-3 as an extra safety margin that appears to make certain attacks harder, and for
making an algorithm that more closely resembles MuHASH [1].

Next Xi,c is converted to finite field element xi,c. Mathematically,

xi,c = ρ−1(Xi,c), (10)

where ρ is the generalized parameters which is function from the field elements to bit strings. This
element xi,c is called a candidate x-value.

The candidate x-value xi,c is tested as follows. If there exists a field element y such that (xi,c, y)
is an element of the group 〈G〉, then xi,c is valid. Otherwise xi,c is invalid.

This loop runs until a valid xi,c is found. The resulting may be denoted as xi. The final value
of the counter may be indicate as ci. Note the ci is the smallest non-negative integer such that xi,ic

is valid.

5.2.7 Recovering

There will generally be two possible values of y that correspond to a valid xi. One of these will be
chosen according to the criterion below, and will be indicated as yi.

The chosen y-coordinate will be determined by the one which satisfies the following properties.
When the field element yi/xi is represented as a bit string of length m, its rightmost bit equals the
leftmost bit of Ni.

The point (xi, yi) will be indicated as Pi and may be referred to as a term point.

5.2.8 Summing

The point

Q =
k∑

i=0

Pi = P0 + · · ·+ Pk (11)

is computed. Note that the summation here is in the elliptic curve group, not addition in the finite
field or ring of integers. The point Q may be referred as the prehash or total point.

5.2.9 Converting

The x-coordinate x(R) of elliptic curve point Q is converted to a bit string U = ρ(x(R)). Some of
the bits of U , as indicated by the parameters, are dropped, obtaining a bit string V . Then V is
converted to an integer v.

Note the recommended parameters indicate that the rightmost bit of U is dropped. In this case,
if the x-coordinate of U when represented as a bit string represents the integer u, then v = bu/2c.

The integer v may be referred to as the multiplier.
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5.2.10 Multiplying

The point S = vG is computed. Note that this is elliptic curve scalar multiplication; that is, v
copies of G summed using elliptic curve operations.

This point may be referred to as the total scaled point.

5.2.11 Shifting

The point R = S + βQ is computed. Note that β ∈ {0, 1}, so R ∈ {S, S + Q}. This point may be
referred to as the shifted total.

If α = 1, then the x-coordinate of R and the x-coordinate of Q are converted to integers and
added modulo 2m. The resulting integer is encoded into a bit string of length m. This is encoded
into a field finite element. The result field element replaces the x-coordinate of the point R. The
y-coordinate of R is not changed, and is not used in the ensuring calculation. Note that R, once
modified in this way, is a point, but it is very unlikely to be on the elliptic curve in question.

5.2.12 Converting

The same point-to-integer conversion process applied to Q is applied to R. This is conversion is
restated explicitly below, with new variable names.

The x-coordinate x(R) of R is converted to a bit string W = ρ(x(R)). Some of the bits of W ,
as indicated by the parameters, are dropped, obtaining a bit string Z. Then Z is converted to an
integer h.

Note the recommended parameters indicate that the rightmost bit of Z is dropped. In this
case, if the x-coordinate R, when represented as a bit string, also represents the integer r, then
h = br/2c.

The integer h may be referred to as the integral hash.

5.2.13 Selecting

The integral hash h is represented as a bit string F . Some subset, as indicated by the parameters
of the algorithm, of the bits of F are selected for inclusion in a bit string H of length n.

Note that, for the recommended parameters, the n rightmost bits of the bit string representation
of h are used to form H.

5.2.14 Output

The bit string H of length n is the output of the ECOH hash function.

5.3 Suggested alternative values of parameters

5.3.1 Curves for deterministic runtime

From certain implementation perspectives, the searching step of generalized ECOH is undesirable
in that its runtime is nondeterministic. This can be overcome by use of different elliptic curves and
binary fields, as follows.

• Use a binary field F2m , where m = 2p for some prime p. Note that F2p is a subfield of F2m .
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• Use an elliptic curve with equation y2 + xy = x3 + ax2 + b such that a, b ∈ F2p . Note that
since the coefficients of the curve equation, the curve may be called a subfield curve.

• Use an encoding of ρ : F2m → {0, 1}m such that elements of F2p are mapped to bit strings
whose leftmost p bits are zeros. (A tower of polynomial basis representation may be used to
achieve this.)

• Choose parameters blen, ilen, clen such that mlen + ilen + clen 6 p.

In this case, it can be shown any candidate x-coordinate will be such that xi,c ∈ F2p (not just in
F2m . Each element in F2p will be the x-coordinate of a point on the curve with y-coordinate in
F2m . Therefore, the only remaining condition on xi,c is that it also belong subgroup generated by
G.

There exist efficient algorithms to test if a point on the curve is also in the subgroup generated
by G, using only the x-coordinate of that point.

Also, it can be shown that for about half of all field elements in F2p the resulting y-coordinate
will also be in F2p . In the other half of x-coordinates in F2p , it is possible to transform the point
on the curve to the twist of the curve with both coordinates in F2p . In both cases, it is possible
to work entirely over the field F2p rather than F2m , at least until the final total point needs to
calculated.

Satoh and others have developed very efficient point counting algorithms for binary curves.
Therefore it is possible to fix some a, say a = 0, and then choose random b ∈ F2p , until one obtains
a curve and its twist, whose orders are twice a prime and four times another prime, respectively,
or vice versa. This would be ideal for making ECOH run in less variable time.

A major disadvantage of this alternative is that the NIST recommended curves would not be
used.

5.3.2 Inverted ECOH

Generalized ECOH with parameter value ε = 1 seems to thwart the most plausible collision finding
attack on ECOH: solving Semaev summation polynomials.

5.4 Incremental mode of operation

If one has already computed the ECOH hash H of a message M , and then a small change is made to
the message, such as the re-assignment of a few bits, to obtain another message M ′, it is possible to
accelerate the computation of the ECOH hash H ′ of message M ′ by using some of the intermediate
computation in the computation of the hash of H.

More precisely, let M ′ and M have bit lengths mlen ′ and mlen, respectively, and let ∆ = M ′⊕M ,
where whichever of M or M ′ is shorter is extended by padding with zero bits on the right. If ∆ is
sufficiently sparser than M ′, then given M ′ and ∆, and certain intermediate values in computation
of M , it is possible to compute H ′ more quickly than computing H ′ directly from M ′.

The intermediate values to allow acceleration computation of M , are mlen, Q and Nk (before
obfuscation). The bit strings ∆ and Nk can be used to compute the revised checksum N ′

k before
obfuscation, by parsing ∆ into appropriately sized blocks, and xoring all of these into Nk. The
revised total point Q′ can also be computed by subtracting off any old contributions from M
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that differ from those of M ′ (which may be located using ∆) and then adding the corresponding
contributions of M ′.

Note that ECOH, in this mode of operation, like MuHASH, is incremental only the sense of
in-place changes. In particular, insertions and deletions are not supported.

Insertions and deletions could be handled by using a different data structure, such as a linked list
or tree. Specifying such data structure is beyond the scope of the ECOH specification. Nevertheless,
because of the importance of insertion and deletion some discussion of this is provided.

Suppose that the actual content is a bit string. Before hashing the content undergoes two
conversions. The first is conversion to a more flexible data structure, such as a linked list. The
second is a conversion back to a bit string. Note that the resulting bit string would generally be
considerably longer than the original content bit string, because it encodes the overhead information
in the data structure used, such as the link pointer addresses in the link list records. This longer
bit string is fed into the ECOH algorithm.

When an insertion occurs in the original bit string content, the linked list may be updated by
the creation of new records, and changing a few link pointer addresses. When this revised linked
list is encoded as a bit string, the link changes are in-place changes, while the new records may be
added to the tail of the old the bit string. This therefore allows accelerated computation of the
revised ECOH hash.

When a deletion occurs in the original bit string content, the linked list may generally be
updated by the changing of a few link pointer addresses, and by dropping a few records, and
perhaps creation of a few new records. When this revised linked list is encoded as a bit string, the
link changes are in-place changes, and the creation of new records, can be done by appending them
to the end of the bit string. The dropped records may have been encoded somewhere in the middle
of the bit string. These records are not pointed in the revised message, so they may be left there,
effectively ignored. Again all changes are in-place so computing the ECOH hash of the revised bit
string can be accelerated.

With this approach, after many insertions and deletions, garbage records will collect, and the
records will be place out of sequence.
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6 Security

This section describes the security of ECOH. For the sake of concreteness, the scope is limited
to the assessment of various plausible attack strategies. For a more theoretical analysis involving
reductionist security arguments, sometimes known as proofs of security, see §A.

The focus will be on the submitted version of ECOH, with only limited attention paid to
generalized ECOH.

6.1 Collision Resistance

A collision in hash function H is a pair of messages (M,M ′) such that M 6= M ′ and H(M) = H(M ′).
Any hash function with a larger domain than range must have a collision. In theory, there exists
an efficient algorithm, namely one that outputs M and M ′ directly to find a collision. In practice,
we do not know how to find this algorithm. To speak of collision resistance, therefore, means to
measure the efficiency of all known algorithms that can find collisions. This section lists some
collision finding algorithms.

6.1.1 Birthday Attack

The birthday collision finding algorithm is as follows. Fix some finite message space, such as all bit
strings of length 4n. Choose a random message from the message space. Compute its hash. Repeat
until two of the hashes computed are identical. Note that the birthday collision finding algorithm
is defined for any hash function.

Consider the heuristic assumption that, when the inputs are uniformly distributed in the mes-
sage space the hash function’s outputs are nearly uniformly randomly distributed in the hash output
range. For message spaces sufficiently large and independent of the hash function’s definition, such
as all bit strings of a given length larger than n, then this heuristic seems reasonable if the output
of the hash function appears pseudorandom.

Under this heuristic, the birthday collision finding algorithm is expected to find a collision after
computing about 2n/2 hash values.

The heuristic can fail for certain message spaces. If the message space is too small, then the
outputs may not be uniformly distributed. For example, if the message space is all bit strings of
length n/3, then there can at most be 2n/3 outputs, and therefore most outputs will not occur.
In this case, the birthday collision finding algorithm will fail. The heuristic can also fail for large
message spaces if they are dependent on the hash function. For example, if the message space
is defined to be all message whose hash is the all zeros bit string. With this type of failure of
the heuristic, the birthday collision finding algorithm finds collision faster. However, such message
spaces, although they exist, may not be amenable to efficient sampling of random elements. The
heuristic can also fail if the hash function is not sufficiently pseudorandom.

Regardless , it seems reasonable that the birthday collision finding algorithm will find collision
at a cost of about 2n/2 hash evaluations or fewer provided the message space used is sufficiently
larger than 2n and that the message space can be sampled efficiently. The birthday collision finding
algorithm is the benchmark by which other collision finding algorithms are compared.
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6.1.2 Semaev Summation Polynomial Attack

This collision finding attack strategy attempts to find a collision in the x-coordinate of the total
point (prehash) Q, using Semaev’s summation polynomials [10], which are now reviewed.

Let F be a finite field. Let E be an elliptic curve with Weierstrass equation having coefficients
in F. Let O denote the point of infinity, which is the identity (neutral) element of the elliptic curve
group. Semaev proved that there exists a multivariable polynomial fn = fn(X1, . . . , Xn) with the
following property. For any x1, x2, . . . , xn ∈ F, there exists y1, . . . , yn such that

(x1, y1) + · · ·+ (xn, yn) = O (12)

if and only if
fn(x1, . . . , xn) = 0. (13)

Furthermore, the polynomial fn has degree 2n−2 in each variable Xi. (Its total degree may be less
than n2n−2.)

To use summation polynomials to attack ECOH, we try to find M and M ′ such that Q = Q′,
where Q′ indicates the prehash obtained in computing the ECOH hash of M ′. More generally, for
any intermediate values that one might get in the computation of the ECOH hash of M and write
with symbol s, we write s′ for the corresponding symbol in the computation of M ′.

A Q = ±Q′ collision means that

P0 + · · ·+ Pk ± ((−P ′
0) + · · ·+ (−P ′

k′)) = O (14)

According Semaev’s result, this implies that

fk+k′(x0, . . . , xk, x
′
0, . . . , x

′
k′) = 0, (15)

because, a point −P and P have the same x-coordinate.
Note that (14) and (15) are not equivalent. Indeed, Semaev’s result only states that if (15) is

true then at least one of the 2k+k′
possible choices of possible y-coordinates (y0, . . . , yk, y

′
0, . . . , yk′)

gives (14).
An attack strategy is to find M and M ′ such that (15) holds. A reasonable heuristic is the

y-coordinates used by ECOH will vary randomly and independently of the y-coordinates needed in
(14). In other words, once equation (15) is satisfied, then we have probability of about 2−(k+k′) of
getting the desired collision in Q + Q′.

This may seem to require that k + k′ be made low. However, in fact, the adversary may have
a better variant of this strategy, where a low index summation polynomial may be used for longer
messages. The adversary can fix certain blocks of M and M ′, and only allow a few to vary, say v
in total. For example, the adversary could fix M ′ entirely, and fix all but the first two blocks of
M . Furthermore, the adversary could vary N0 and N1 such that N0 ⊕N1 is some constant value,
which means that the checksum point Pk is fixed too. Then (14) may be re-written as

P0 + P1 + F = O (16)

where F is some fixed point, and P0 and P1 are unknowns. Using summation polynomials this
implies

f3(x0, x1, x) = 0 (17)
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where x is the x-coordinate of the fixed point F . A solution to (17) should have at least a 12.5%
chance of giving a solution to (16) and thereby a collision in ECOH. The equation (17) has degree
two in each of the variables x0 an x1, and since x is constant, we may re-write the equation as

g(x0, x1) = 0 (18)

where now the fixed value x is incorporated into the definition of g.
At this point, we may observe that by definition of ECOH, xi = ai + niz where ai, z and ni

are field elements of low degree (in the polynomial basis representation, which we now assume).
Furthermore, ni is derived directly from the message, and z is fixed value, used to shift the message
bits to the left inside the x-coordinate. The value ai includes the index and the counter. We can
expect the counter value to be quite low, so the adversary can make reasonable guesses at bi using
low values. Therefore, the adversary can try to solve (18) by solving the following equation

h(n0, n1) = 0, (19)

where n0 and n1 are now low degree field elements, and the polynomial h is derived from g by
incorporation of the fixed values z and the guessed values for b0 and b1.

But recall that N0 ⊕ N1 was fixed in this version of the attack. Consequently, n1 may be
expressed in terms of n0, the constants N0 ⊕ N1 and z, and the guesses b0 and b1. Therefore, we
get a single equation

q(n0) = 0 (20)

This equation will be quartic. It will have, therefore, at most four roots. Making a heuristic
assumption that the four roots are random field elements, then the probability that they sufficiently
low degree to serve as n0 is negligible.

The attacker may choose to get around this by varying more of the message, say n0 and n1

and n2. In this case, a two variable polynomial is obtained, and the adversary’s task is to find low
degree solutions. Such solutions may exist. Semaev notes [10] that finding low degree solutions
to multivariate polynomials allows one to find discrete logarithms in elliptic curves more quickly.
This suggests that finding low degree roots is difficult, even they exist, because the elliptic curve
discrete logarithm has appeared to remain difficult despite [10]. Since discrete logs are expect to
take 2m/2 steps to solve, finding low degree solutions to the multivariate polynomials deduced from
Semaev summation polynomials, as described above, may also take 2m/2 steps. Therefore, this
attack seems no better than the birthday attack.

That said, the low degrees in [10] may be considerably lower than those needed against ECOH.
Further research may be needed to asses the difficulty of these problems.

In the event that this attack is discovered to require less work than 2n/2 bit operations, such
as if finding sufficiently low degree solutions to polynomials above can be done this efficiently,
then this deficiency may be resolved by amending ECOH to make it more like MuHASH. This
could be done by setting ε ∈ {1, 2, 3} in the generalized ECOH algorithm. In this case, the attack
described above does not work because a transformation is applied mixing the message bits and the
index bits and the counter bits, so that the resulting x-coordinate cannot so readily be expressed
as a predetermined polynomial of a unknown but low degree finite field element. Specifically, a
polynomial equation as in (19) cannot be directly derived from (18).
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6.1.3 Shifted collision attacks

The recommended parameter β = 1 is intended to provide preimage resistance. Unlike the alterna-
tive parameters β = 0 choice, it introduces the possibility that Q 6= ±Q but R = ±R′. This would
mean that

Q±Q′ = (v′ ± v)G, (21)

where v and v′ are, recall, obtained from the x-coordinates of Q and Q′. Ignoring for the moment
how one obtains M and M ′ corresponding to Q and Q′, one attack strategy is to find Q and Q′

satisfying (21).
One strategy to solve (21) is to pick random Q and Q′ and to see if the desired equation holds.

On the heuristic the discrete logs and x-coordinate are essentially random and independent of
one another, then each guess would have probability of about 2−m of success. The attack would
therefore take 2m steps, which is much slower than the birthday attack.

6.1.4 Truncation attack

An attacker may try to find a collision in which R 6= ±R′, but H = H ′. Such pairs (R,R′) certainly
exist, are easy to find. Given such a pair, one has to find the corresponding message (M,M ′). One
can easily pick one of the messages first and then find the other with exhaustive search, at cost of
about 2m steps. Again this is much worse than the birthday attack.

6.2 Second Preimage Resistance

Second preimage resistance is defined relative to some message space with a given probability
distribution. A message M is selected from this message space according to the given probability
distribution. The adversary then must find a second message M ′ such that M ′ 6= M with the same
hash value, that is, H(M) = H(M ′). Note that it is not required that M ′ belongs to the same
message space.

If the hash has second preimage resistance of n bits, then finding this M ′ should require work
of about 2n operations.

6.2.1 Exhaustive search for second preimages

In the exhaustive search algorithm, a message search space is fixed, not necessarily the same space as
the one for M . The search space should be larger than 2n, such as the set of all bit strings of length
2n. Then random messages M ′ are selected from the search space until one has H(M ′) = H(M).

Under the heuristic that the hashes of random messages from the search space are nearly
uniformly distributed in the hash output space, this algorithm is expect to require about 2n−1 hash
evaluations.

This heuristic is generally reasonable, unless the hash fails in some respect to be pseudorandom,
and also the distribution for M is such that the hash of M is among the less likely values of hashes
of the values in the search space. In this case, the algorithm above may require more than 2n−1

hash evaluations.
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6.2.2 Wagner’s Generalized Birthday Attack

Wagner [12, Theorem 3] describes an application of his generalized birthday attack in which many
discrete logarithms are solved in order to decompose a point into any group into a sum of points
each from a given list. Essentially for t > 1, then this attack takes about

2t+m( 1
2
+ 1

1+t) (22)

elliptic curve group operations. Suppose that ECOH did not include the XOR checksum. Then,
this attack could be used to find a second preimage of the weakened ECOH hash of some given
message. This would be an internal collision in the sense that the intermediate Q values of the
two message would be identical. Setting t = 2, this would be a 235, 340, or 475 bit attack for the
curves B-283, B-409 and B-571. Therefore, if this attack could be launched, then it would be below
NIST’s required threshold, specifically, by 13, 36 and 28 bits, respectively.

Wagner’s attack, however, does not include a method to handle any dependency between the
blocks. In particular, the checksum in final the ECOH point contributing to Q, would create an
unusual dependency between the discrete logs of the points Pi. Perhaps Wagner’s attack can be
extended to handle relations from the checksum in the point representation space and in the discrete
log space. This may have an associated cost.

6.2.3 Semaev summation polynomial second preimages

Solving Semaev summation polynomials can also be used to obtain second preimages, similarly to
what was done with collisions.

6.3 Preimage Resistance

Preimage resistance of a hash function refers to difficulty of the problem of taking a random bit
string H and finding a message M equals H.

SHA-3 submissions are expected to have n bits of preimage resistance. This means that an
algorithm that computes preimage with significant probability should take about 2n operations. It
would also be true if no preimage finding algorithm has probability of success more than about
2−n. More generally, if an algorithm requires t bit operations and has probability of success ε, then
t/ε should be approximately 2n.

An n-bit hash function with constant output has n bits of preimage resistance under this defi-
nition. Arguably this is counterintuitive, and a good reason to consider an alternative definition of
preimage resistance, as in §6.4, for which the constant function is not preimage resistant. However,
the security of certain digital signature schemes employing hash functions, such as ECDSA, require
the definition above of preimage resistance. This is a strong reason not to abandon this definition,
despite its trivial instantiation. In this light, the explanation for the counterintuitiveness of the
constant function being preimage resistant is that our intuition says it is insecure mainly because it
is not collision resistant, not because it is not preimage resistant. In other words, collision resistance
and preimage resistance are somewhat independent notions.2

We consider the following two preimage attacks on ECOH.
2Indeed, take any collision resistant hash and construct from it another that remains collision resistant but fails

to be preimage resistant. Therefore, these notions are effectively independent, in that neither implies the other.
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6.3.1 Exhaustive preimage search

Given a bit string H of length n, do the following to attempt to find a preimage. Fix a finite
message space, such as all message some fixed length, such as 4n. Choose a message M uniformly
at random in the message space and compute its hash. If the hash of M equals H, then stop and
output M as the preimage. If the hash is not H, repeat until done.

Under the heuristic that the hashes of random messages uniformly distributed in the message
space are nearly uniformly distributed bit strings of length n, then we can conclude the following.
If t is the time the algorithm is allowed to run, and ε is the probability that algorithm finds a
preimage, then t/ε ≈ 2n.

This is a generic algorithm to find preimages in a hash function. Its runtime complexity analysis
depends on a heuristic of the randomness of the output of the hash. We conjecture that this heuristic
is reasonable for ECOH.

More generally, a milder heuristic gives the same estimate of success. The milder heuristic
is that message space is such that for t random messages one expects approximately t different
outputs of the hash on these outputs.

6.3.2 Inverting ECOH

Another strategy is to find a preimage of the bit string H of length n is the following. The attack
has two stages. The first stage is the following.

• For each bit string B of length m− n− 1 do the following steps.

• Form the bit string X ′ = B‖H of length m− 1.

• Append to X ′ a single bit to obtain a bit string X such that X represents the x-coordinate
of a point 〈G〉, if it exists.

• For each of two possible points R with x-coordinate represents by X do the following.

• For each point Q in 〈G〉 do the following.

• Compute R′ = Q + bx(Q)/2cG. If R′ = R, stop and output Q.

Then second stage is to find M such that the ECOH computation on M yields Q as the intermediate
total of elliptic curve points. This could be done by exhaustive search, or perhaps by using Semaev
summation polynomials.

Regardless of the method used in the second stage, under the heuristic assumptions R′ = R
with probability approximately 2−m, the first stage would be expected to take about 2m−n−1+m−1

iterations to find a collision. Because m > n + 1, the first stage takes more than 2n operations.

6.4 Relative Preimage Resistance

As noted above, it may be worthwhile to consider another type of preimage resistance, which we will
call relative preimage resistance and define below. It is defined relative to a known message space
with a probability distribution. The adversary is given the hash of message selected at random
from this message space according to the given probability distribution. The adversary must then
find some message whose hash equals the hash of the unknown message.
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Note that this definition is the same as second preimage resistance except that (a) the adversary
is given the hash of first message rather than the first message, and (b) the adversary wins even if
it finds the first message.

Under the heuristic that the hash function outputs are random, then there exists some easily
sampled probability distribution of messages such that images of these messages give rise to every
possible bit string in the range of the hash function with approximately equal probability. With re-
spect to these general message spaces, the relative preimage resistance is equivalent to the preimage
resistance.

Relative preimage resistance differs from standard preimage resistance primarily for specialized
message spaces. Relative preimage resistance can be defined for small message spaces. If a message
space has size 2s, then an adversary can find, by exhaustive search (see below) a preimage with
work of about 2s steps. Therefore, the bit of security defining relative preimage resistance are
relative to the message space, and in particular, its size in bits.

6.4.1 Exhaustive search for preimages

Given a hash value, one can exhaustively search for random messages from the message space one
takes on the desired hash value.

The adversary should guess the message is order of highest probability in the distribution, if
able. With one guess the adversary has probability of success 2−h, where h is the min-entropy of the
probability distribution. For repeated guessing, the number of guesses needed to be quite certain to
find a preimage depends on the probability distribution, and the way the hash produces collisions
on that probability distribution. On the heuristic the hash outputs are random and independent of
the inputs, then this attack should require about at most 2n guesses and at least about 2h guesses,
especially if h � n.

6.4.2 Single block inversion

This is a specific attack one may try against ECOH. It is a relative preimage attack whose prob-
ability distribution has entropy blen bits, which is less than n bits. The aim of the attack of the
attack is to be faster than exhaustive search, which one heuristically would expect to take 2blen

guesses.
In this attack all but one block is fixed and known to the adversary. Suppose that Nj is the

secret block. The adversary is given the hash H and must determined the unknown message block.
The adversary loops over all points R in 〈G〉 that truncate down to H. This loop has approximately
2m−n steps.

If β = 0, then the attacker solves a discrete log to get v and thus Q. This has cost of about
2m/2 elliptic curve group operations. If β = 1, then the attacker does an exhaustive search for Q,
taking 2m elliptic curve group operations. (I do not know of a 2m/2 step algorithm to solve this).

Then adversary knows all the term points except Pj and Pk. These can be subtracted from Q
to obtain Pj +Pk = (x, y). Suppose that ω = 0, then xk = xj +δ for some δ ∈ F2m that the attacker
knows, because of the way the tail indexed block is computed as checksum. So the attacker needs
to solve for xj in the equation:

(xj , yj) + (xj + δ, yk) = (x, y) (23)
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The attacker does not know yj and yk, but here perhaps Semaev summation polynomials will again
be useful. The result is a single variable polynomial equation in xj , which the adversary can easily
solve over F2m .

Therefore for β = 0, the cost of the attack is approximately 2m−n+m/2, which is larger than
exhaustive search 2blen provide (3/2)m > n+blen. This is the case for the recommended parameters.

For β = 1, an extra margin of safety is provided.
For ω = 1, then the checksum block is an obfuscated function of xj , and the attack does not

work. Solving for xj can be done by exhaustive search.

6.5 Pseudorandomness

The output of ECOH is a truncated elliptic curve point. An algorithm [5, 8] to distinguish ECOH
output from random bit strings is as follows. Compute all possible values of the x-coordinate that
could have been truncated to obtain the ECOH hash. Test each of these for validity of being a
point on the elliptic curve. If the proportion of valid points is higher than half, then guess that it
is an ECOH hash.

Therefore, the output of ECOH is distinguishable from a random bit string of the same length,
with work proportional to the number of bits truncated, and a mild success rate. This attack can
be iterated over many ECOH outputs to obtain a higher success rate.

In many cryptographic applications, such distinguishability is not known to lead to any attacks.
Indeed, users of ECOH would not attempt to hide the fact that they are using ECOH. In this
attack, the adversary mainly learns the user is using ECOH, information that is public already.
Furthermore, there is evidence [3, Theorem 1] that using x-coordinates as elliptic curve private keys
does not compromised security. In the principal submitter’s opinion, although this is technically a
distinguishing attack, nothing practical can be gained from it.

Nonetheless, note that generalized ECOH provides an option α = 1, which seems to thwart this
attack. This option uses addition modulo 2m.

6.6 Side Channel Resistance

It seems intrinsic to the design of ECOH that any implementation must inevitably run in time that
varies with the message being hashed. Specifically, a counter must be incremented until a point on
the curve is found. This creates a potential for a side channel, which may be harmful if the message
being hashed is a secret, especially a low-entropy secret.

As an implementation-level countermeasure, the implementation can introduces dummy oper-
ations to mask the message-dependent variability, or even attempt to make things run usually in
the same amount of time, with the rarer exceptions masked by some other means. The blocks can
also be processed in randomized order.

As a protocol-level countermeasure, one can try to avoid hashing secrets, or at least low-entropy
secrets.

6.7 Denial of Service Resistance

The following strategy could be used as a denial of service attack against ECOH. An adversary
could search for a message M with one or more blocks requiring a high value of the counter Ci.
Hashing the message will therefore take longer, because the hasher must search longer.
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We now estimate the efficiency of this strategy. First note, that for submitted version of ECOH
only odd values of the counter c need be considered. For any given message block Oi, the probability
the number t of odd c that must be tried is 2−t. Note c = 2t − 1. Furthermore, the attacker has
no efficient way of finding messages with larger t. That is, the attacker must use trial and error,
selecting random messages until one with high t is found.

Under this heuristic, an attacker would have try about 2t values of message block until is found
requiring t tries. In other words, the attacker must use exponentially more work to force the users
to linearly more work. From this perspective, the attack is rather mild.
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7 Applications

Currently, SHA-1 and SHA-2 have four main applications in NIST standards:

• computing message digests in digital signature schemes, e.g. ECDSA,

• message authentication, i.e. HMAC,

• key derivation for key agreement, e.g. Concatenation KDF,

• pseudorandom number generation, e.g. Hash-based DRBG.

The following sections discuss how to apply ECOH in the five cases, directly, and in some cases, in
an alternative manner.

7.1 Digital Signatures

When using ECOH in a digital signature scheme, such as ECDSA, one can just take the output of
ECOH and use it is the same manner as one would use SHA-2.

When using ECDSA with the same curve as used in ECOH, the elliptic curve implementation
can be common to both algorithms, thereby providing a slightly smaller implementation.

7.2 Message Authentication

The HMAC construction was specifically intended for a hash function using Merkle-Damgard it-
eration, so using ECOH in HMAC would not be what HMAC was intended for. Nevertheless, we
identified no attacks on using ECOH as the hash in the HMAC construction.

7.3 Pseudorandom Number Generation

If ECOH were used as part of the Hash DRBG to build a pseudorandom number generator, one
would arrive at something similar in some respects to the Dual EC DRBG.

As noted earlier, an adversary willing to do some work can distinguish ECOH outputs from
random bit strings. The same attacks applies to the Dual EC DRBG. We submit, however, that
this is the only effective information that the adversary learns: whether the bit string is generated
as an ECOH output or not. In most applications of pseudorandom number generators, this would
not be an issue.

For the purposes of generating random numbers to be used as elliptic curve keys [3] provides
some heuristic arguments that building private keys from x-coordinates of random points is not
problematic.

7.4 Key Derivation

A key derivation function (KDF) is subject to most of the concerns of a pseudorandom number
generator, as outlined in §7.3.

The output of a key derivation function is sometimes used as key stream. For example, ECIES
has this as an option. Suppose that ECIES is implemented with this option, and with ECOH
serving the role of the hash function inside a KDF construction. If an adversary knows that the
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plaintext has one of two candidate values, then given an ECIES ciphertext, the adversary can
subtract the plaintext to get two candidate key streams. This streams can be tested for consistency
with being produced by ECOH. Likely, one will be consistent and the other not, with the consistent
key stream coming from the plaintext that was encrypted. Note the ECIES is not included as a
NIST standard.

7.5 Randomized Hashing

We identified no issues with using random hashing hashing that are specific to ECOH.
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ECOH

A Heuristic Security Arguments

In this section, heuristic arguments for the security of ECOH are given.

A.1 Collision Resistance

Wagner [12] defined the k-sum problem. In the context of elliptic curve groups, this problem may
be expressed as follows.
Problem A.1. Given a point Y and k lists of random points L1, . . . , Lk, find Pi ∈ Li such that
Y = P1 + · · ·+ Pk.

Wagner [12] proves a theorem, attributed to Dai, that if the k-sum problem can be solved in
time t, then the discrete logarithm problem can be solved time almost t.

Now consider a collision (M,M ′) in ECOH, where the associated intermediate values are related
Q′ = ±Q. We call such a collision an internal collision. Then

P0 + P1 + · · ·+ Pk ∓ (P ′
0 + P ′

1 + · · ·+ P ′
k′) = O (24)

The problem of finding an internal ECOH problem is similar to the (k + k′ +2)-sum problem, with
the exception that the lists L1 involved are not necessarily of random point but of points whose
x-coordinates have a particular structure.

If one adopts the loose heuristic that the structure in x-coordinate amounts to effectively a
random list of points, then finding an internal ECOH collision may be viewed as an instance of the
k-sum problem. Under this heuristic, it is at least as hard as the discrete log problem, because of
Wagner and Dai’s theorem.

If an ECOH collision is not a internal collision, then it must be an external collision.

A.2 Second Preimage Resistance

A second preimage gives also collision, so we get at least the same amount of security as provided
by collision resistance.

A.3 Preimage Resistance

The shifted scalar multiply function in ECOH takes a point Q, maps its x-coordinate to an integer
v and returns the point R = Q + vG. We generalize this slightly. Let E be the elliptic curve group
in question. A function f : E → Z is called a conversion function. We will be mostly interested in
the conversion function used by ECOH which maps Q to v above. Given a conversion function f ,
we can define function φ : E × E → E by

φ(S, Q) = Q + f(Q)S. (25)

We will also write this as φS(Q). This function is the generalized shifted scalar multiply. We
formulate the following problem.
Problem A.2. Given S and φS(Q), find Q.

We call this problem the shifted log problem. We conjecture as follows.
Conjecture A.1. If the conversion function f is almost injective, then solving the shifted log
problem cost about N , the order of G, group elliptic curve group operations.
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Compared to the discrete log problem, which takes about
√

N operations to solve, this problem
is conjecturally much harder.

An immediate objection to this conjecture is that the shifted log problem may in fact be easier
than the discrete log problem, requiring much fewer than

√
N group operations. We observe,

however, than an algorithm to solve the shifted log problem could be used to forge an ECDSA
signature.
Theorem A.1. Let f be the conversion function used in ECDSA to determine the r component of
the signature from an elliptic curve point. Let A be an algorithm that solves the associated shifted
log problem where f . Then an algorithm F can be built that calls A once can be used to forge an
ECDSA signature. The forger is as efficient as A plus a very small extra cost.

Proof. Algorithm F is given message M and public key P with respect to which to forge a signature.
Algorithm F has access to a subroutine A such that A(T, S) inverts φS on T . In other words, A is
such that

T = A(T, S) + f(A(T, S))S. (26)

We now describe algorithm F .
Algorithm F computes e = H(M) where H is the hash used in ECDSA, including the step of

conversion to an integer. Recall that a pair of integers (r, s) is a valid signature for message M and
public key P if and only if:

r = f((e/s)G + (r/s)P )) (27)

where the divisions above are done modulo N . Observing that (27) holds if

R = (e/s)G + (f(R)/s)P (28)

and r = f(R), the following strategy can be used for F .
First F chooses random s and computes S = −(1/s)P and T = (e/s)G. Then F calls A to

compute
r = f(A(T, S)), (29)

and output (r, s) as an ECDSA signature. To see that this a valid signature, write R = A(T, S).
By (26),

(e/s)G = R− (f(R)/s)P, (30)

which clearly implies (28).

Therefore, the shifted log problem associated with the ECDSA conversion function is at least
as hard as being able to forge an ECDSA signature on any message given only the public key.

Assuming the security of ECDSA, this only assures that shifted log problem is about as hard
as

√
N elliptic curve group operations.

We give a heuristic argument in the generic group model suggesting that the shifted log problem
takes about N group operations, not just

√
N group operations. We assume that f is almost

bijective.
Theorem A.2. An algorithm A working in the generic group that finds a point that is the shifted
log of the first two independent points, that makes q queries has a probability of success of approx-
imately q/N .
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Proof. The desired result is T = R + f(R)S, where T and S are first two independent points in
the generic group session.

If R is also independent in the session, with public representation chosen by A, then its private
value will be randomly by the generic group oracle, and the probability of the desired is exactly
1/N , the probability that R = T − f(R)S holds in the private space.

If R is a dependent point in the generic group session, then its private value is determined by the
generic group oracle before its public representation is chosen by the generic group oracle. Because
f is almost invertible, and the representation of R is chosen uniformly at random, the distribution
of f(R) is almost uniformly at random. The probability of the desired result is therefore only a
little more than 1/N , depending on the degree of departure of f from being bijective.

Now suppose that adversary B could find preimages in ECOH. Then B can be used to solve the
shifted log problem, with a somewhat lowered probability of success, as follows. Build an algorithm
A to solve the shifted log problem by calling B as subroutine. First A truncates its input and gives
to B. When B returns its preimage M , we have a heuristic argument that there is some probability
that the final point obtained in the computation of the hash of M before truncation is the same as
the point for which A is trying to solve the shifted log. For example, in ECOH-256, this probability
is 2−27. In this case, the value of Q in the computation of the ECOH hash of M is the desired
shifted log.

A.4 Pseudorandomness

As noted earlier, ECOH outputs are slightly distinguishable from random bit strings. Heuristic
arguments suggest, however, that otherwise ECOH outputs are not generally distinguishable. For
example, in the generic group model of an elliptic curve, the points map randomly into a space. In
this case points in the space may be slightly distinguishable from random bit strings.
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B Examples

In this section, some examples of ECOH are given.

B.1 Some Examples

Tables 10–13 give the output of ECOH on six different bit strings. The output is given in hexadec-
imal notation.

M H(M)
C86A6DBA2030177D298A1104EF3D575466D6B3DDF306F94EBE96CFA4

0 19725F2CF6DBAE5C80FECE71FE30DB287BF1504BB3276EC1FA7A9BD8
11 1D6F757C15908D5FF669C58AB2940CBF8F707F2B42BF9E0BF832761F

1001100 D704100A2F928565CAD79E42761B3E84EE63C9020F4D1B36ED2634D0
11001100 60102BBF4D997BE46C754A6367C0FAD8C55207D6CDE0212891D0C792
100110000 9BC7F964121BF2B70DB8CC66C90C06599665F4978AD15EBBB40A680D

Table 10: ECOH-224 examples

M H(M)
AC160817C86A6DBA2030177D298A1104EF3D575466D6B3DDF306F94EBE96CFA4

0 4A28011C19725F2CF6DBAE5C80FECE71FE30DB287BF1504BB3276EC1FA7A9BD8
11 33E772D61D6F757C15908D5FF669C58AB2940CBF8F707F2B42BF9E0BF832761F

1001100 5A297E85D704100A2F928565CAD79E42761B3E84EE63C9020F4D1B36ED2634D0
11001100 7D1EEF7860102BBF4D997BE46C754A6367C0FAD8C55207D6CDE0212891D0C792
100110000 FE46B2829BC7F964121BF2B70DB8CC66C90C06599665F4978AD15EBBB40A680D

Table 11: ECOH-256 examples

B.2 Examples of Intermediate Values

B.2.1 ECOH224 Example (one-block Message)

Let the message M be the 120-bit ASCII string “abcdefghijklmno” which is equivalent to the
hexadecimal string:

6162636465666768696A6B6C6D6E6F

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 128-bit
value N , which in hexadecimal is:

6162636465666768696A6B6C6D6E6F80

We can parse N into one 128-bit blocks, N0 in hexadecimal format

N0 = 6162636465666768696A6B6C6D6E6F80
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M H(M)
BD946B4998EBC6C45F55F4E575B1A5E167803F4995125BFF
881C27359351377BD323B7CE42D62C1C8173D465C554DA34

0 E1B847F4AE0E878BDB8A9D07063267515EA7FECF1CD8C4E2
1C8649E9D96A7764D0BBA7F1EE3B5601129E71BC0368FE96

11 48318BDB401E092273FBF3215680D99B5B0A1DA89E4F7619
C2FFDA3F6BBDF1795871B7E683437903757F229E4B30D9D5

1001100 594FC40AE04F3803359172BDE3C2148F96ACCD46EE7AA416
C3905FD4FA4C65CBC8F36C73ABD61FEC4F849C0F29BC351A

11001100 386B7DD30F11DD5084FD0ECC0E585C24E0EE8D9D34DF4D06
2372571BF89C680CABEC1576C72B5EBC438369C3BAB1B4FB

100110000 EAA441ADB14DB54049D2A43AB7F33CBD7C0EC57664D6F8A9
2D4DBAD96842EE2570E84C14213CC00998A97426CC695493

Table 12: ECOH-384 examples

M H(M)
757AB7847F7A720FA639B6E8CBA29EB135C2A9586DC8BC8B99CD5444AA69113D
5112147ED12C1E7BB8C9FDEDFC0BA560312C6E15E40B901A53881F3CDCFE4156

0 B366D9054215EE6418B5E48B9633B8F5B34C0CE8E7316CEB8C6EC1DC941C47E3
555357293701864470F8B4F1BD69D6A0484D748363965B184418E4EE2AE01DCD

11 D2636EF1FFF65E1431AE962E1E6D1355314F08FDA1CBC3392CE59846A6A3457D
B0D635F5921163BD5A8CE089B964AB12D2A42554DF74F904A9075FD15CE2220C

1001100 946F6B1DD663364864CBAC497BC1ACF4BF6E87C36A1AD0F04310D90066178BDA
BFE1C6A28C872869CA8D7B496806068EA6E7513AB1A854D24C579186D623193F

11001100 3E305821E741E4CE19DF34A1EA2D5BEFB8DB4E9A0C95586C4055EAA51B02D7BA
A56631E8F61A33762C4EAA86AA9EDDFBFE179398F1D93BAABE8D656852CD820D

100110000 6D5445FF7137D57F38601DDAE02AD4FD5763CCC49E73371993B43907D2A37BF0
AA49C5734BE376C335AA97AF36DCFC638E665F0DB112534B63B3D4C6FB6ADEEC

Table 13: ECOH-512 examples
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Next, O0 is formed by appending the 64-bit counter values for 0, to N0 to get O0, in hexadecimal
as

O0 = 6162636465666768 696A6B6C6D6E6F80 0000000000000000

We form O1 = (
⊕

Ni)||Imlen , where mlen is the 64-bit representation of the bit length of M, so
that Imlen = 0000000000000078. In totality we get O1 in hexadecimal format

O1 = 6162636465666768 696A6B6C6D6E6F80 0000000000000078

For O0 we start with a counter value c0 = 1 in hexadecimal format

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000001

This when combined with 027‖O0‖064 ⊕ C0 gives us X ′
0, in hexadecimal format

X ′
0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000001

which decompresses to a point on the curve secp283r1 when C0 = 3, or when X0 in hexadecimal
format is

X0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000003

This decompresses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit ofN0, yp = 0 gives us the point P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000003,

00000000050376A6 A334368C305B46E0 802EF2781CFCC550 D12E2983032F745D 25EA3D8A50D2F7BD)

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000003,

00000000050376A6 A334368C305B46E0 802EF2781CFCC550 D12E2983032F745D 25EA3D8A50D2F7BD).

Now with O1 we construct X ′
1 = 027‖O1‖064 ⊕ C1, where C1 starts = 1

X1 = 0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000078 0000000000000001

which decompreses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N1, yp = 0, gives us the point P1

P1 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000078 0000000000000001 ,

0000000002B39C01 5A3546A831E3A973 230EA15EA17C472B 09A7207588C53B68 023A68A6A22C9262 )

§B EXAMPLES 40



ECOH B.2 Examples of Intermediate Values

Which is added to Q to become,

Q1 =(0000000001493FB2 CA26C851E35B29AA 085E61DD2E8C93B3 2040B7430A102D71 B5C50CB6682A5063 ,

00000000001587CE 606D9A9EE15712A9 E2244AB827B92294 4E7D3D310FAEFCA3 4B1B5A681D39EA4D ).

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q1)/2c =0000000000A49FD9 65136428F1AD94D5 042F30EE974649D9

90205BA1850816B8 DAE2865B34152831

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q1)/2cG =(00000000038372D3 05CF94C4D2B2D1AB A4D9A1FA975F149F

982C013BF86C4692 905433FFD2ED6EF3 ,

0000000005501C6A DA6D0E07D2B0A2C7 0316D973D90CC645

F63AB923DFBEC6A6 53E048D1513BA111 ).

Adding that value back with Q1 above we get.

Q1 + bx(Q1)/2cG =(0000000005157E42 95D6FF0C5B3D9D00 FA1B0D76A04ADBF9

0252C748B2C46850 BDCF32AFBF9C5AAB,

0000000002A28F1B 83177FAC4824222D

412B691FA51524DF 126D535AFF08BB73 9A9F304A236397AF).

And again interpreting the x-coordinate of the result as a multiprecision integer and dividing
by 2 discarding the remainder to get

bx(Q + bx(Q1)/2cG)/2c =00000000028ABF21 4AEB7F862D9ECE80 7D0D86BB50256DFC

812963A459623428 5EE79957DFCE2D55.

From this result the rightmost 224-bits are extracted to get the message digest.

H = 2D9ECE807D0D86BB50256DFC812963A4596234285EE79957DFCE2D55

B.2.2 ECOH224 Example (two-block Message)

Let the message M be the 248-bit ASCII string “abcdefghijklmnopqrstuvwxyzabcde” which is
equivalent to the hexadecimal string:

6162636465666768696A6B6C6D6E6F707172737475767778797A6162636465

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 256-bit
value N, in hexadecimal string:

§B EXAMPLES 41



ECOH B.2 Examples of Intermediate Values

N0 = 6162636465666768696A6B6C6D6E6F70

N1 = 7172737475767778797A616263646580

O0 is formed by prepending the 64-bit counter values for 0, 0000000000000000 to N0 to get O0

in hexadecimal format

O0 = 6162636465666768 696A6B6C6D6E6F70 0000000000000000

O1 is formed by prepending the 64-bit counter values for 1, 0000000000000001 to N1 to get O1

in hexadecimal format

O1 = 7172737475767778 797A616263646580 0000000000000001

We form O2 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 00000000000000F8. In totality we get O2 in hexadecimal format

1010101010101010 10100A0E0E0A0AF0 00000000000000F8

This when combined with 027‖O0‖064 ⊕ C0 gives us X ′
0, in hexadecimal format

X ′
0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000001

which decompresses to a point on the curve sect283r1 when C0 = 7, or when X0 in hexadecimal
format is

X0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007

This decompresses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N0, yp = 0 gives us the point P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007 ,

0000000005D2D2B2 6B08807376F86FC0 31616229DACDD074 EDDD97B55E07F882 753192E074303C35 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007 ,

0000000005D2D2B2 6B08807376F86FC0 31616229DACDD074 EDDD97B55E07F882 753192E074303C35 )

Now with O1 we construct X ′
1 = 027‖O1‖064 ⊕ C1, where C1 starts = 1

X1 = 0000000000000000 7172737475767778 797A616263646580 0000000000000001 0000000000000001
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which decompresses directly to a point on the curve sect283r1 P1

P1 =(0000000000000000 7172737475767778 797A616263646580 0000000000000001 0000000000000001 ,

0000000003554E1B E469855991ACD3A7 684E71E8DE83B716 153E2A4D9F7555E7 5C26B1C1DDD4F660 )

Which is added to Q to become,

Q1 =(0000000002519C79 ABB30532C0277212 FA7527B2EF45BEAE CC90C6569765D7CC 004E63CF26E51764 ,

00000000034745F9 D4060AFEF1B0D247 6A42DBFE6FDD9160 12D17A335769B05B 49974C557F48FF18 )

We can now construct the final block X ′
2 = 027‖O2‖064 ⊕ C2 with C2 = 1, gives us X ′

2, in
hexadecimal format

X ′
2 = 0000000000000000 1010101010101010 10100A0E0E0A0AF0 00000000000000F8 0000000000000003

Which decompresses with C2 = 3 to give us the point P2,

P2 =(0000000000000000 1010101010101010 10100A0E0E0A0AF0 00000000000000F8 0000000000000003 ,

00000000005101D6 63A2FC2E0F1806E7 999BC9FAE01D787A 943C2574136DAC9E 2D0913E2E39F15AE )

Which is added to Q to become,

Q2 =(000000000207FDCC 60A06C5113C7D974 EDCF68C574606DDA

E011631B29590AD8 8F48C21504095B10 ,

0000000005CC85CD 6153FA9C2D1FECD9 D83746919C4D67AC

A12E9BF84AD8AD83 516402F90E9ABCC9 )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q2)/2c =000000000103FEE6 3050362889E3ECBA 76E7B462BA3036ED

7008B18D94AC856C 47A4610A8204AD88

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q2)/2cG =(0000000002703FE2 871E5F59C4E80175 8A7C3F5964B213E3

D111BCFC280B33DB 7FE445CB1C699729 ,

0000000000D12956 76446E7693FFC04C BFCA6A94206F3C34

BC4305D537C1A8CC 4B2636C2D5D6C8D4 )

Adding that value back with Q2 above we get.
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Q2 + bx(Q2)/2cG =(00000000060883AD E578F697250191F3 0EB2F4094732BB66

7D7D90AEB0C6AB30 EC9AC49D96EB54C8 ,

000000000100886D 599FEB046E1F1968 2446D3D2870CB271

2B6C4432B0D42044 3F6CDA67C42F2E2D )

And again interpreting the x-coordinate of the result as a multiprecision integer and dividing
by 2 discarding the remainder to get

bx(Q2 + bx(Q2)/2cG)/2c =00000000030441D6 F2BC7B4B9280C8F9 87597A04A3995DB3

3EBEC85758635598 764D624ECB75AA64

From this result the rightmost 224-bits are extracted to get the message digest.

H = 9280C8F987597A04A3995DB33EBEC85758635598764D624ECB75AA64

B.2.3 ECOH256 Example (one-block Message)

Let the message M be the 120-bit ASCII string “abcdefghijklmno” which is equivalent to the
hexadecimal string:

6162636465666768696A6B6C6D6E6F

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 128-bit value
N, the hexadecimal string:

6162636465666768696A6B6C6D6E6F80

We can parse N into one 128-bit blocks, N0 in hexadecimal format

N0 = 6162636465666768696A6B6C6D6E6F80

O0 is formed by prepending the 64-bit counter values for 0, 0000000000000000 to N0 to get O0

in hexadecimal format

O0 = 6162636465666768 696A6B6C6D6E6F80 0000000000000000

We form O1 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 0000000000000078. In totality we get O1 in hexadecimal format

O1 = 6162636465666768 696A6B6C6D6E6F80 0000000000000078

For O0 we start with a counter value C0 = 1 in hexadecimal format

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000001

This when combined with 027‖O0‖064 ⊕ C0 gives us X ′
0, in hexadecimal format
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X ′
0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000001

which decompresses to a point on the curve sect283r1 when C0 = 3, or when X0 in hexadecimal
format is

X0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F80 0000000000000000 0000000000000003

This decompresses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N0, yp = 0 gives us the point P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80

0000000000000000 0000000000000003 ,

00000000050376A6 A334368C305B46E0 802EF2781CFCC550

D12E2983032F745D 25EA3D8A50D2F7BD )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80

0000000000000000 0000000000000003 ,

00000000050376A6 A334368C305B46E0 802EF2781CFCC550

D12E2983032F745D 25EA3D8A50D2F7BD ).

Now with O1 we construct X ′
1 = 027‖O1‖064 ⊕ C1, where C1 starts = 1

X1 =0000000000000000 6162636465666768 696A6B6C6D6E6F80

0000000000000078 0000000000000001

which decompreses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N1, yp = 0, gives us the point P1

P1 =(0000000000000000 6162636465666768 696A6B6C6D6E6F80

0000000000000078 0000000000000001 ,

0000000002B39C01 5A3546A831E3A973 230EA15EA17C472B

09A7207588C53B68 023A68A6A22C9262 )

Which is added to Q to become,

Q1 =(0000000001493FB2 CA26C851E35B29AA 085E61DD2E8C93B3
2040B7430A102D71 B5C50CB6682A5063 ,

00000000001587CE 606D9A9EE15712A9 E2244AB827B92294

4E7D3D310FAEFCA3 4B1B5A681D39EA4D ).
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We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q1)/2c =0000000000A49FD9 65136428F1AD94D5 042F30EE974649D9

90205BA1850816B8 DAE2865B34152831

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q1)/2cG =(00000000038372D3 05CF94C4D2B2D1AB A4D9A1FA975F149F

982C013BF86C4692 905433FFD2ED6EF3 ,

0000000005501C6A DA6D0E07D2B0A2C7 0316D973D90CC645

F63AB923DFBEC6A6 53E048D1513BA111 ).

Adding that value back with Q1 above we get.

Q1 + bx(Q1)/2cG =(0000000005157E42 95D6FF0C5B3D9D00 FA1B0D76A04ADBF9

0252C748B2C46850 BDCF32AFBF9C5AAB ,

0000000002A28F1B 83177FAC4824222D 412B691FA51524DF

126D535AFF08BB73 9A9F304A236397AF ).

And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get

bx(Q1 + bx(Q1)/2cG)/2c =00000000028ABF21 4AEB7F862D9ECE80 7D0D86BB50256DFC

812963A459623428 5EE79957DFCE2D55.

From this result the rightmost 256-bits are extracted to get the message

H = 4AEB7F862D9ECE807D0D86BB50256DFC812963A4596234285EE79957DFCE2D55

B.2.4 ECOH256 Example (two-block Message)

Let the message M be the 248-bit ASCII string “abcdefghijklmnopqrstuvwxyzabcde” which is
equivalent to the hexadecimal string:

6162636465666768696A6B6C6D6E6F707172737475767778797A6162636465

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 256-bit
value N, in hexadecimal string:

N0 = 6162636465666768696A6B6C6D6E6F70

N1 = 7172737475767778797A616263646580
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O0 is formed by prepending the 64-bit counter values for 0, 0000000000000000 to N0 to get O0

in hexadecimal format

O0 = 6162636465666768 696A6B6C6D6E6F70 0000000000000000

O1 is formed by prepending the 64-bit counter values for 1, 0000000000000001 to N1 to get O1

in hexadecimal format

O1 = 7172737475767778 797A616263646580 0000000000000001

We form O2 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 00000000000000F8. In totality we get O2 in hexadecimal format

O2 = 1010101010101010 10100A0E0E0A0AF0 00000000000000F8

Now we can build X0 by constructing 027‖O0‖064 ⊕ C0 gives us X ′
0, in hexadecimal format

X ′
0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000001

which decompresses to a point on the curve sect283r1 when C0 = 7, or when X0 in hexadecimal
format is

X0 = 0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007

This decompresses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N0, yp = 0 gives us the point P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007 ,

0000000005D2D2B2 6B08807376F86FC0 31616229DACDD074 EDDD97B55E07F882 753192E074303C35 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 0000000000000000 0000000000000007 ,

0000000005D2D2B2 6B08807376F86FC0 31616229DACDD074 EDDD97B55E07F882 753192E074303C35 )

Now with O1 we construct X ′
1 = 027‖O1‖064 ⊕ C1, where C1 starts = 1

X1 = 0000000000000000 7172737475767778 797A616263646580 0000000000000001 0000000000000001

which decompresses directly to a point on the curve sect283r1 P1

P1 =(0000000000000000 7172737475767778 797A616263646580 0000000000000001 0000000000000001 ,

0000000003554E1B E469855991ACD3A7 684E71E8DE83B716 153E2A4D9F7555E7 5C26B1C1DDD4F660 )
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Which is added to Q to become,

Q1 =(0000000002519C79 ABB30532C0277212 FA7527B2EF45BEAE CC90C6569765D7CC 004E63CF26E51764 ,

00000000034745F9 D4060AFEF1B0D247 6A42DBFE6FDD9160 12D17A335769B05B 49974C557F48FF18 )

We can now construct the final block X ′
2 = 027‖O2‖064 ⊕ C2 with C2 = 1, gives us X ′

2, in
hexadecimal format

X ′
2 = 0000000000000000 1010101010101010 10100A0E0E0A0AF0 00000000000000F8 0000000000000001

Which decompresses with C2 = 3 to give us the point P2,

P2 =(0000000000000000 1010101010101010 10100A0E0E0A0AF0 00000000000000F8 0000000000000003 ,

00000000005101D6 63A2FC2E0F1806E7 999BC9FAE01D787A 943C2574136DAC9E 2D0913E2E39F15AE )

Which is added to Q to become,

Q2 =(000000000207FDCC 60A06C5113C7D974 EDCF68C574606DDA E011631B29590AD8 8F48C21504095B10 ,

0000000005CC85CD 6153FA9C2D1FECD9 D83746919C4D67AC A12E9BF84AD8AD83 516402F90E9ABCC9 )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q2)/2c =000000000103FEE6 3050362889E3ECBA 76E7B462BA3036ED

7008B18D94AC856C 47A4610A8204AD88

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q2)/2cG =(0000000002703FE2 871E5F59C4E80175 8A7C3F5964B213E3

D111BCFC280B33DB 7FE445CB1C699729 ,

0000000000D12956 76446E7693FFC04C BFCA6A94206F3C34

BC4305D537C1A8CC 4B2636C2D5D6C8D4 )

Adding that value back with Q2 above we get.

Q2 + bx(Q2)/2cG =(00000000060883AD E578F697250191F3 0EB2F4094732BB66

7D7D90AEB0C6AB30 EC9AC49D96EB54C8 ,

000000000100886D 599FEB046E1F1968 2446D3D2870CB271

2B6C4432B0D42044 3F6CDA67C42F2E2D )

And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get
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bx(Q + bx(Q2)/2cG)/2c =00000000030441D6 F2BC7B4B9280C8F9 87597A04A3995DB3

3EBEC85758635598 764D624ECB75AA64

From this result the rightmost 256-bits are extracted to get the message digest.

H = F2BC7B4B9280C8F987597A04A3995DB33EBEC85758635598764D624ECB75AA64

B.2.5 ECOH384 Example (one-block Message)

Let the message M be the 184-bit ASCII string “abcdefghijklmnopqrstuvw” which is equivalent to
the hexadecimal string:

M = 6162636465666768696A6B6C6D6E6F7071727374757677

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 192-bit
value N, the hexadecimal string:

N0 = 6162636465666768696A6B6C6D6E6F707172737475767780

O0 is formed by prepending the 64-bit counter values for 0, 0000000000000000 to N0 to get O0

in hexadecimal format

O0 = 6162636465666768 696A6B6C6D6E6F70 7172737475767780 0000000000000000

We form O1 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 00000000000000B8. In totality we get O1 in hexadecimal format

O1 = 6162636465666768 696A6B6C6D6E6F70 7172737475767780 00000000000000B8

For O0 we start with a counter value C0 = 1 in hexadecimal format

C0 =0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000001

This when combined with 089‖O0‖064 ⊕ C0 gives us X ′
0, in hexadecimal format

X ′
0 =0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 0000000000000000 0000000000000001,

which decompresses to a point on the curve sect409r1 when C0 = 3, or when X0 in hexadecimal
format is
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X0 =0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 0000000000000000 0000000000000001

This decompresses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N0, yp = 0 gives us the point P0

P0 =(0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 0000000000000000 0000000000000003 ,

000000000191A0B0 6ADAB93E784A6F23 C8C5CB5034646DB2 31E882BADD533D18

352E7A772DC80390 DE7F091C4BB9E0CC 1BC8AC79BD3D7641 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 0000000000000000 0000000000000003 ,

000000000191A0B0 6ADAB93E784A6F23 C8C5CB5034646DB2 31E882BADD533D18

352E7A772DC80390 DE7F091C4BB9E0CC 1BC8AC79BD3D7641 )

Now with O1 we construct X ′
1 = 089‖O1‖064 ⊕ C1, where C1 starts = 1

X ′
1 =0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 00000000000000B8 0000000000000001

which decompreses using the OctetString-to-ECPoint conversion routine in [11], where yp =
leftmost bit of N1, yp = 0, when C1 = 17, this gives us the point P1

P1 =(0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767780 00000000000000B8 0000000000000011 ,

00000000011B9198 B0EA854681342F4B 42C836D91BB2FB7A 4436B25671A3296E

3F76AE9BCFE67022 F916732B72AC3BDC 713BD501017E25E7 )

Which is added to Q to become,

Q1 =(0000000001AE7127 CA01E4D745CA9624 F82AFC5D6A3B11DD 0CA8F7CB68894F4F

B8D6385FF9E66419 3BF48AE768F30073 EC08BC6C6A1A0DC3 ,

0000000000A814E0 A50090F86016B37E CE25C8423DA416C8 9C94BF40BED02C22

CE28CC4B506B2F3D 1608EDE68DDE731A 3BA86C87ACAC2FC1 )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format
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bx(Q1)/2c =0000000000D73893 E500F26BA2E54B12 7C157E2EB51D88EE 86547BE5B444A7A7

DC6B1C2FFCF3320C 9DFA4573B4798039 F6045E36350D06E1

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q1)/2cG =(0000000001B78FC0 9C0E1CC13B6CC64F EFE4BAB16991E533 4FFC78BEAB7FCA19

368B43A487E1F183 C2BBBE0170113636 0CF226E944F177A7 ,

0000000001485DE6 C2D7CD42A23D3C2C 0F2708227101A9BD 4FE06F4CC63C9F73

9E650AB49E022983 B9933045FCF47928 B6EFF44E4B4C1199 )

Adding that value back with Q1 above we get.

Q1 + bx(Q1)/2cG =(00000000004542EB 2CA38A8BCBD25140 5E57E89918D54FE8 D63EE9578E9F6BA4

5BF7CBE94A8C9622 8A8A45E961A70AA8 9FB050B5AE3E8C25 ,

00000000015C8F57 A6DFD85FD32359FD 10ABE69DA053A179 EA12ACB77D1C3AFE

5E6AEEAF085DA460 B7417E72C018185C 1A1A9A8642AD16B0 )

And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get

bx(Q + bx(Q1)/2cG)/2c =000000000022A175 9651C545E5E928A0 2F2BF44C8C6AA7F4 6B1F74ABC74FB5D2

2DFBE5F4A5464B11 454522F4B0D38554 4FD8285AD71F4612

From this result the rightmost 384-bits are extracted to get the message

H =9651C545E5E928A02F2BF44C8C6AA7F46B1F74ABC74FB5D2

2DFBE5F4A5464B11454522F4B0D385544FD8285AD71F4612

B.2.6 ECOH384 Example (two-block Message)

Let the message M be the 376-bit ASCII string “abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu”
which is equivalent to the hexadecimal string:

M =6162636465666768696A6B6C6D6E6F70717273747576777

8797A6162636465666768696A6B6C6D6E6F707172737475

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 128-bit
value N, the hexadecimal string:

N0 = 6162636465666768 696A6B6C6D6E6F70 7172737475767778
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N1797A616263646566 6768696A6B6C6D6E 6F70717273747580

O0 is formed by prepending the 64-bit counter values for 0, 0000000000000000 to N0 to get O0

in hexadecimal format

O0 =6162636465666768 696A6B6C6D6E6F70 7172737475767778 0000000000000000

O1 is formed by prepending the 64-bit counter values for 1, 0000000000000001 to N1 to get O1

in hexadecimal format

O1 =797A616263646566 6768696A6B6C6D6E 6F70717273747580 0000000000000001

We form O2 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 0000000000000178. In totality we get O2 in hexadecimal format

O2 =181802060602020E 0E0202060602021E 1E020206060202F8 0000000000000178

Now we can build X0 by constructing 089‖O0‖064 ⊕ C0, starting with C0 = 1, gives us X ′
0, in

hexadecimal format

X ′
0 =0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767778 0000000000000000 0000000000000005

which decompresses to a point on the curve sect409r1 when C0 = 5 using the OctetString-
to-ECPoint conversion routine in [11], where yp = leftmost bit of N0, yp = 0 gives us the point
P0

P0 =(0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767778 0000000000000000 0000000000000005 ,

000000000002A9D4 633A89ED45FC23E9 6476C50243F01639 CB31E3755862468D

3665E103B45D4318 37C9221F30DF8347 2A19D141C426D5F6 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 0000000000000000 6162636465666768 696A6B6C6D6E6F70

7172737475767778 0000000000000000 0000000000000005 ,

000000000002A9D4 633A89ED45FC23E9 6476C50243F01639 CB31E3755862468D

3665E103B45D4318 37C9221F30DF8347 2A19D141C426D5F6 )
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Now with O1 we construct X ′
1 = 089‖O1‖064 ⊕ C1, where C1 starts = 1

X1 =0000000000000000 0000000000000000 797A616263646566 6768696A6B6C6D6E

6F70717273747580 0000000000000001 0000000000000001

Which decompresses directly to a point on the curve sect409r1 P1

P1 =(0000000000000000 0000000000000000 797A616263646566 6768696A6B6C6D6E

6F70717273747580 0000000000000001 0000000000000001 ,

00000000017ABCB5 8579B719BE59AB9A 1924229BF48A2D52 F0C99A232E5B1679

D4D146A98DE6CA55 0474671158DA55F5 678B24D3D85FD7D6 )

Which is added to Q to become,

Q1 =(000000000129965A 444E38624E57FEAF D0B88E7FD0E2B4BE BD95E05CE5E628B4

47F2A31B93D7BE2A E028E2238772B39B C1CFF55E90133459 ,

0000000001031F49 E841BAFBFF99A6EB 406A00AF92BED691 B214017BBD707715

CA68AF201F47B129 92EF935A9D630BDD D7140567E370AD0B )

We can now construct the final block X ′
2 = 089‖O2‖064 ⊕ C2 with C2 = 1, gives us X ′

2, in
hexadecimal format

X ′
2 =0000000000000000 0000000000000000 181802060602020E 0E0202060602021E

1E020206060202F8 0000000000000178 0000000000000001

Which decompresses when C2 = 3 to the point P2,

P2 =(0000000000000000 0000000000000000 181802060602020E 0E0202060602021E

1E020206060202F8 0000000000000178 0000000000000003 ,

000000000099B9CC 7CE297AEC658E24B DAA59D3A01E53787 FBCEFA70EB5707DB

3101CED05D713B61 341C6BFCC72130AA 57EC7CC71D1781A4 )

Which is added to Q to become,

Q2 =(00000000008A53C3 3C34D0CD168EDCBB 05B2C39C996B4021 37D726FFBCC16B08

04891FA81733FEBC 9D8244BFE15FDDD4 027ADDA37EF366E5 ,

0000000001EEAF69 56ACF64D091381E7 06BC51323CF613F9 C9E84B88343F4C4A

8A4D1B7CD4F3AFEB 49349155A9345A16 F2EBE6A4F6F11F37 )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format
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bx(Q2)/2c =00000000004529E1 9E1A68668B476E5D 82D961CE4CB5A010 9BEB937FDE60B584

02448FD40B99FF5E 4EC1225FF0AFEEEA 013D6ED1BF79B372

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q2)/2cG =(0000000000DC6524 44632FA528E947A2 0E5D0FB8FF7E0C1B 842337D61EABD6A6

2C4359023177EF84 FF02FC1B4D4957A0 EF4A96F197D3DCF7 ,

0000000000C04329 FB7FA27CE5C60AFF 9F9769998EF12B41 310EBEBFC10231C9

E9E04524694CBBB1 27DF3B511DDD2C5B 6FB5EEDB90B0BCE2 )

Adding that value back with Q2 above we get.

Q2 + bx(Q2)/2cG =(0000000001C758E8 0547F77A76A9B832 9FBBAD13C66C0843 7234301ACD1DE3F8

140CFAD7B732CD42 36B9A51578E871E1 2FF5441CD765730B ,

0000000000C2EF8E 4926518537EEA213 B21A1039ED86ADB3 328F012E00176610

195F8DF69740D13F 42A5C67020860282 C3DD7FDE36C4FF82 )

And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get

bx(Q + bx(Q2)/2cG)/2c =0000000000E3AC74 02A3FBBD3B54DC19 4FDDD689E3360421 B91A180D668EF1FC

0A067D6BDB9966A1 1B5CD28ABC7438F0 97FAA20E6BB2B985

From this result the rightmost 384-bits are extracted to get the message

H =02A3FBBD3B54DC194FDDD689E3360421B91A180D668EF1FC

0A067D6BDB9966A11B5CD28ABC7438F097FAA20E6BB2B985

B.2.7 ECOH512 Example (one-block Message)

Let the message M be the 248-bit ASCII string “abcdefghijklmnopqrstuvwxyzabcde” which is
equivalent to the hexadecimal string:

M =6162636465666768696A6B6C6D6E6F707172737475767778797A6162636465

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 256-bit
value N, the hexadecimal string:

N0 =6162636465666768696A6B6C6D6E6F707172737475767778797A616263646580
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O0 is formed by prepending the 128-bit counter values for 0, 0000000000000000 0000000000000000
to N0 to get O0 in hexadecimal format

O0 =6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 0000000000000000

We form O1 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 0000000000000000 00000000000000F8. In totality we get O1 in hexadecimal format

O1 =6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 00000000000000F8

For O0 we start with a counter value C0 = 1 in hexadecimal format

C0 =0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000001

This when combined with 059‖O0‖0128 ⊕ C0 gives us X ′
0, in hexadecimal format

X ′
0 =0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 0000000000000000 0000000000000000 0000000000000001,

which decompresses when C0 = 9 giving the first point on the curve sect571r1, P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 0000000000000000 0000000000000000 0000000000000009 ,

041B4ABA9CB08A2F F43895E48F2F7E6C 44AF5AA4FA946FBB AF17273DCACBACEE E5B44857D9FEA5F5

D7F2D8F508257492 0B3D1678050BB9F4 279EF306EDF6D802 DB31BACE8B9E1BF8 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 0000000000000000 0000000000000000 0000000000000009 ,

041B4ABA9CB08A2F F43895E48F2F7E6C 44AF5AA4FA946FBB AF17273DCACBACEE E5B44857D9FEA5F5

D7F2D8F508257492 0B3D1678050BB9F4 279EF306EDF6D802 DB31BACE8B9E1BF8 )

Now we form X ′
1 = 059‖O1‖0128 ⊕ C1, starting with C1 = 1 as an integer to get

X ′
1 =0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 00000000000000F8 0000000000000000 0000000000000001,
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which decompresses directly to a point on the curve sect571r1

P1 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646580

0000000000000000 00000000000000F8 0000000000000000 0000000000000001 ,

04F740D7339C396A 0DEA35193BFA3BE0 F2A46DFCA56B0816 F44047BCDE11E988 FD012355EA07828B

90F659F7994F5DA2 59BA39AD49DAF7E9 8182E605BB194C70 A6AACCAD71073F00 )

Which is added to Q to become,

Q1 =(0747F927845CBFB2 DB3250B42CE6E164 B2E18A90038C6B6D

CB42FFF958AB7461 E423DE8C9ED78452 1B59B431C5362C85

26EA76598FCB278A 0C6B6463A96881BF 49FC7936FD30639D ,

0149C28B83EAA241 007B439BBF6BEE55 11A94AF32B9B12CC

9771DA9A94B46123 E79FA43D15108893 0942D4789DDA39AF

BD410D2F2CF8769E A75CE0CEC2A88116 6602DAB7C4F1010E )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q1)/2c =03A3FC93C22E5FD9 6D99285A167370B2 5970C54801C635B6 E5A17FFCAC55BA30 F211EF464F6BC229

0DACDA18E29B1642 93753B2CC7E593C5 0635B231D4B440DF A4FE3C9B7E9831CE

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q1)/2cG =(060860C6EC61FA09 8D9EAC0A03A878C1 6C780A513ED3F8B1 DF65621ADE1E4E4B

B4AE4AF20E60C745 7A7C4770FE73EC8F E9F0912EF286E469 92419CEF5133CB14

E86650CE7F9EF118 ,

0209C682B18D8F99 4AC9F4BEBFA04782 3BA5832E0F06CD81 107840A75D49A418

39611E69FFC12DA9 9E242FA8CD6603E5 F325657E38AF35AD FC536DF994E4EF2E

CC32CF057E8ABBA2 )

Adding this result back into the value of Q1 above we get

Q1 + bx(Q1)/2cG =(07FD7954FDFACFCC 2BAB2EDA39C2647C F96EF37BD2C0CB89 B39EA19F305304F3

6556404C17C2E3A9 E6D38344370CE6FC FB926B77ACE984DE D7ED35C8F53666FB

2AA783C047902C5A ,

059D22A547B3E3FC A05BBEB41658B6A3 FC20C0AA8C5B5205 0AEAB15DB65D0E26

FB20C040FFFA3FFF 3530CBFD184BD89C 1A596CD87C9CA82A C264832821CFE0E3

B023BCF1E0D8099B )
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And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get

bx(Q + bx(Q1)/2cG)/2c =03FEBCAA7EFD67E6 15D5976D1CE1323E 7CB779BDE96065C4 D9CF50CF98298279

B2AB20260BE171D4 F369C1A21B86737E 7DC935BBD674C26F 6BF69AE47A9B337D

9553C1E023C8162D

From this result the rightmost 512-bits are extracted to get the message

H =15D5976D1CE1323E7CB779BDE96065C4D9CF50CF98298279B2AB20260BE171D4

F369C1A21B86737E7DC935BBD674C26F6BF69AE47A9B337D9553C1E023C8162D

B.2.8 ECOH512 Example (two-block Message)

Let the message M be the 504-bit ASCII string “abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu-
vwxyzabcdefghijk” which is equivalent to the hexadecimal string:

M =6162636465666768696A6B6C6D6E6F707172737475767778797A616263646566

6768696A6B6C6D6E6F707172737475767778797A6162636465666768696A6B

The message is padded by appending a one bit followed by 7 zero bits, resulting in the 128-bit
value N, the hexadecimal string:

N0 =6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646566

N1 =6768696A6B6C6D6E 6F70717273747576 7778797A61626364 65666768696A6B80

O0 is formed by prepending the 128-bit counter values for 0, 0000000000000000 0000000000000000
to N0 to get O0 in hexadecimal format

O0 =6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646566 0000000000000000

0000000000000000

O1 is formed by prepending the 128-bit counter values for 1, 0000000000000000 0000000000000001
to N1 to get O1 in hexadecimal format

O1 =6768696A6B6C6D6E 6F70717273747576 7778797A61626364 65666768696A6B80 0000000000000000

0000000000000001

We form O2 = (
⊕

Ni)‖Imlen , where mlen is the 64-bit representation of the bit length of M,
Imlen = 0000000000000178. In totality we get O2 in hexadecimal format
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O2 =060A0A0E0E0A0A06 061A1A1E1E1A1A06 060A0A0E1414141C 1C1C060A0A0E0EE6 0000000000000000

00000000000001F8

Now we can build X0 by constructing 059‖O0‖0128 ⊕ C0, starting with C0 = 1, gives us X ′
0, in

hexadecimal format

X ′
0 =0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646566

0000000000000000 0000000000000000 0000000000000000 0000000000000001

which decompresses to a point on the curve sect571r1 immediately using the OctetString-to-
ECPoint conversion routine in [11], where yp = leftmost bit of N0, yp = 0 gives us the point
P0

P0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646566

0000000000000000 0000000000000000 0000000000000000 0000000000000001 ,

06023280BA1084E8 53FDFA74117D8351 E4CD2928344A5FB3 B50D292CAB0487D4 ABDA5275070E1ECC

68593B676134E007 48ABEC52B3B6075D 77833B892B35F67C 97EFFC9C5C7C01D9 )

Which is added to Q, initialized as the point at infinity to become,

Q0 =(0000000000000000 6162636465666768 696A6B6C6D6E6F70 7172737475767778 797A616263646566

0000000000000000 0000000000000000 0000000000000000 0000000000000001 ,

06023280BA1084E8 53FDFA74117D8351 E4CD2928344A5FB3 B50D292CAB0487D4 ABDA5275070E1ECC

68593B676134E007 48ABEC52B3B6075D 77833B892B35F67C 97EFFC9C5C7C01D9 )

Now with O1 we construct X ′
1 = 059‖O1‖0128 ⊕ C1, where C1 starts = 1

X ′
1 =0000000000000000 6768696A6B6C6D6E 6F70717273747576 7778797A61626364 65666768696A6B80

0000000000000000 0000000000000001 0000000000000000 0000000000000001

which decompresses to a point on the curve sect571r1 immediately using the OctetString-to-
ECPoint conversion routine in [11], where yp = leftmost bit of N1, yp = 0 gives us the point
P1

P1 =(0000000000000000 6768696A6B6C6D6E 6F70717273747576 7778797A61626364 65666768696A6B80

0000000000000000 0000000000000001 0000000000000000 0000000000000001 ,

0387314F6143173F 29EBA96F515C14E7 1B6BE9E5ABC36357 DB0262505CB8B8F2 257CD69F8004EBDD

5474D254F7C41A63 DED3BCD44745B0B9 354E125C083CE112 FD9350AF0CD889CD )

Which is added to Q to become,
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Q1 =(06311BD41C6CBB86 7258756A39571FE8 0FC4C383B985CF31 5C167B80042646AB 98E700F4BAE6AFB5

ABC658FBC155AEDE 5498BE508598BF02 C5C2AA72A67B844C 5FABCF7E74BB08D6 ,

020CD10E355A305A 315F9FA157F228DF 5330BE8B051C7A18 FD9A1189C63C8569 6612006EEB9329B8

2F8F92FFC8FC65B6 B66102C48297EDED E9A914EF1565F78E 52D3C826BD3CB250 )

We can now construct the final block X ′
2 = with059‖O2‖0128 ⊕C2 with C2 = 1, gives us X ′

2, in
hexadecimal format

X ′
2 =0000000000000000 060A0A0E0E0A0A06 061A1A1E1E1A1A06 060A0A0E1414141C 1C1C060A0A0E0EE6

0000000000000000 00000000000001F8 0000000000000000 0000000000000001,

which again decompresses immediately to the point P2

P2 =(0000000000000000 060A0A0E0E0A0A06 061A1A1E1E1A1A06 060A0A0E1414141C 1C1C060A0A0E0EE6

0000000000000000 00000000000001F8 0000000000000000 0000000000000001 ,

004D3AEE2C2E680D 10A4D9C7664F443D BE370B6AAF9D406A ECB053984391369F 7B7CF596A9DA7C53

3CA556D0E498C4EE BE31B50EA3D7A94F 13CC3510E7D77A6D D7FA7CB19E55BDCF )

P2 is added to the Q value to result in

Q2 =(00E2F5EC93E7F9BD 39D9D90F93A320DA DF2BF9FFA2F7EC5B EABC90A94DD39CFC 915217DC96D1BF6C

B844D92BEBC170F2 624FE38CB7AFDCF4 8002400F04A18C8A 3D336DB871B99AC2 ,

0483978E80D268EF 7B9CFA5C45F96794 4F8B909A064BF4E7 3FDFD41EFBD9ED18 60BD39AF8DDF7BFE

C4B6D1E6BE00F66A FBB037F94DC392DB 06FF42E2727F49AB DD753A6829C3CC85 )

We can interpret the x-coordinate as an multi-precision integer and divide by two taking the
floor of the result, or simply dropping the remainder to get the following in hexadecimal format

bx(Q2)/2c =00717AF649F3FCDE 9CECEC87C9D1906D 6F95FCFFD17BF62D F55E4854A6E9CE7E

48A90BEE4B68DFB6 5C226C95F5E0B879 3127F1C65BD7EE7A 400120078250C645

1E99B6DC38DCCD61

Using this value as an integer we can multiply the base point of the curve to get,

bx(Q2)/2cG =(0052F6968D4E4078 E4CA24ACA4D2E9C3 305EEDD56678A890 4380D020F5058224

2312BAC171F6B3A9 823CE263E5769A4D 9C21B4F7B8058B1B 00560A3DC84664F7

1ED546F2F1FA3822 ,

0779600D4F72A682 2863B44C3B02128F A006CADAEB5F5146 ECCC8977780D2693

A028F6582FDFEEF7 AFD3C3054194CF29 FD5AAC1B66D54465 F08A406A8E7ABC7B

6AD49BC2640BE5FD )
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Adding that value back with Q2 above we get.

Q2 + bx(Q2)/2cG =(07A658BF3ECCC401 328134D228C58B69 AE907C02518CC92D 3BBDE19CD10B119D

D83DF56F838AB621 A111B616425410F6 9C861D53DD1E7631 2143CF25316DDC9C

81289F00785B0295 ,

01C3010607099A57 C63D7C7519B81B62 C630E3D629B77134 5F9EC34D17D0A253

30D25DF1AEA2ADFB 5BA8CE6B3E8058D9 B536E1BE513BA482 F2BF257D29DE976A

1324EAE5D6589280 )

And again interpreting the x-coordinate of the result as a multi-precision integer and dividing
by 2 discarding the remainder to get

bx(Q + bx(Q2)/2cG)/2c =03D32C5F9F666200 99409A691462C5B4 D7483E0128C66496

9DDEF0CE688588CE EC1EFAB7C1C55B10 D088DB0B212A087B

4E430EA9EE8F3B18 90A1E79298B6EE4E 40944F803C2D814A

From this result the rightmost 512-bits are extracted to get the message

H =99409A691462C5B4D7483E0128C664969DDEF0CE688588CEEC1EFAB7C1C55B10

D088DB0B212A087B4E430EA9EE8F3B1890A1E79298B6EE4E40944F803C2D814A
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