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Abstract: 
 
This proposal is submitted in response to the Request for Candidate Algorithm Nominations for a 
New Cryptographic Hash Algorithm (SHA-3) Family published in the Federal Register, Volume 
72, No 212, Friday November 2nd, 2007. 
 
This proposal introduces a family of cryptographic algorithms suitable for Digital Signatures, 
Message Authentication, and Random Number Generation. These algorithms can be used as a 
direct drop-in substitution for the existing SHA-2 family of algorithms. These algorithms were 
explicitly designed to run on 8-bit microcontrollers, using only the most primitive arithmetic 
operations. Consequently, they can be implemented on a wide range of platforms. These 
algorithms are believed to be resistant to all known attacks; a preliminary analysis of the security 
of these algorithms is included. 
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1. Summary and Checklist 
 
1.1 Algorithm Specifications and Supporting Documentation 
 

The complete specification of the submitted algorithm and the design rationale is 
presented in section 2 below. 

 
 
1.2 Statements about Estimated Computational Efficiency and Memory Requirements 
 
The following estimates are based on actual measurements made on the platforms indicated with 
a 1000 bit message. Different message lengths may yield different results. 
 
 
1.2.1 Estimates (memory requirements and speed) on NIST Reference Platform (32 bit) 
 

Platform/processor used: Intel Pentium III 
   Clock speed:  664 MHz 
   Memory:  512 KB 
   Operating system: Windows XP Professional 
   Compiler:  Microsoft Visual Studio 2005 
 

(For 224-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   12,834 
2.       set up the algorithm (e.g. build internal tables)      707 
3.       memory requirements          118 bytes 

 
(For 256-bit message digest) Number of clock cycles required to:  

1. generate one message digest, and   13,228 
2. set up the algorithm (e.g., build internal tables)      755 
3. memory requirements          126 bytes 
 

(For 384-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   20,546 
2. set up the algorithm (e.g., build internal tables)      659 
3. memory requirements          178 bytes 
 

(For 512-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   21,553 
2. set up the algorithm (e.g., build internal tables)      735 
3. memory requirements          210 bytes 
 
Speed improvements can be obtained by making the following tradeoffs: 

1. Allocating static memory for the state structure instead of passing in the 
structure as a parameter 
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2. Having the incoming message buffer be word aligned and having an exact 
multiple of the word size in partial messages 

3. Completing all of the message preparation before hashing begins 
 
 
1.2.2 Estimates (memory requirements and speed) on NIST Reference Platform (64-bit) 
 

Platform/processor used: Intel Pentium III 
   Clock speed:  664 MHz 
   Memory:  512 KB 
   Operating system: Windows XP Professional 
   Compiler:  Microsoft Visual Studio 2005 

 
(For 224-bit message digest) Number of clock cycles required to:  

1. generate one message digest, and   12,834 
2. set up the algorithm (e.g., build internal tables)      707 
3. memory requirements          118 bytes 

 
(For 256-bit message digest) Number of clock cycles required to:  

1. generate one message digest, and   13,228 
2. set up the algorithm (e.g., build internal tables)      755 
3. memory requirements          126 bytes 
 

(For 384-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   19,568 
2. set up the algorithm (e.g., build internal tables)      641 
3. memory requirements          178 bytes 
 

(For 512-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   20,527 
2. set up the algorithm (e.g., build internal tables)      711 
3. memory requirements          210 bytes 
 
Speed improvements can be obtained by making the following tradeoffs: 
1. Allocating static memory for the state structure instead of passing in the 

structure as a parameter 
2. Having the incoming message buffer be word aligned and having an exact 

multiple of the word size in partial messages 
3. Completing all of the message preparation before hashing begins 

 
 
1.2.3 Estimates (memory requirements and speed) on 8-bit processors 
 

Platform/processor used: Silicon Labs C8051F120 
   Clock speed:  24.5 MHz 
   Memory:  8,448 Bytes 
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   Operating system: None 
   Compiler:  Keil Professional Developers Toolkit 

 
(For 224-bit message digest) Number of clock cycles required to:  

1. generate one message digest, and   370,416 
2. set up the algorithm (e.g., build internal tables)     3,924 
3. memory requirements            118 bytes 

 
(For 256-bit message digest) Number of clock cycles required to:  

1. generate one message digest, and   382,224 
2. set up the algorithm (e.g., build internal tables)     4,728 
3. memory requirements            126 bytes 
 

(For 384-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   534,132 
2. set up the algorithm (e.g., build internal tables)     4,476 
3. memory requirements            178 bytes 
 

(For 512-bit message digest) Number of clock cycles required to:  
1. generate one message digest, and   589,296 
2. set up the algorithm (e.g., build internal tables)     6,492 
3. memory requirements            210 bytes 
 
Speed improvements can be obtained by making the following tradeoffs: 

1. Allocating static memory for the state structure instead of passing in the 
structure as a parameter 

2. Allocating selected state variables in near data memory instead of 
extended memory 

3. Completing all of the message preparation before hashing begins 
4. Rewriting the innermost hash computation in assembly language 

 
 
1.2.4 Estimates of gate counts in hardware implementations: 

 
(For 224-bit message digest):  3178 

 
(For 256-bit message digest):  3530 

 
(For 384-bit message digest):  5642 

 
(For 512-bit message digest):  7050 
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1.3 Statement of expected strength (i.e. work factor) of the algorithm for each of the security 
requirements specified in Sections 4.A.ii and 4.A.iii and for each message digest size (224, 256, 
384, and 512 bits) 
 

A summary of the strengths of the specified security requirements is given in the 
following table; the supporting rationale is presented in section 3 below. The security 
strengths of m-bit subsets are these figures pro-rated according to the message digest size. 
 
Message digest size 224 bits 256 bits 384 bits 512 bits 
First preimage resistance 224 bits 256 bits 384 bits 512 bits 
Second preimage resistance 224 bits 256 bits 384 bits 512 bits 
Collision resistance 112 bits 128 bits 192 bits 256 bits 
Multi-collision resistance 224 bits 256 bits 384 bits 512 bits 
Length-extension resistance 224 bits 256 bits 384 bits 512 bits 
HMAC 224 bits 256 bits 384 bits 512 bits 
PRF 224 bits 256 bits 384 bits 512 bits 
Randomized hashing 224 bits 256 bits 384 bits 512 bits 
 

 
1.4 Cryptanalysis with respect to known attacks and their results 

 
An analysis of the resistance to each of the known attacks is presented in section 3 below. 

 
 
1.5 Explanation of the provenance of any constants or tables used 
 

The Initial Values used for each message digest size are copied verbatim from the 
corresponding SHA-2 algorithm described in FIPS 180-3. The rationale is that if these 
initial values are good enough for SHA-2 then they should also be good enough for  
SHA-3. All other variables are initialized to zero. No other constants or tables are used by 
this algorithm. 

 
 
1.6 References to any published materials analyzing the security of the submitted algorithm 
 

The submitted algorithm employs new techniques for computing hash functions, different 
from previous methods. Consequently, there are no published materials in existence at the 
time of submission. The security analysis presented in section 3 below necessarily had to 
start from scratch; all relevant references are given in that section. 

 
 
1.7 Statement on the advantages and limitations of the algorithm 
 

The submitted algorithm has the following advantages: 
1. It is explicitly designed to run on 8-bit microcontrollers. 
2. It can be implemented on a wide variety of platforms 



 6

3. It permits efficient hardware implementations 
4. It provides a drop-in replacement for the SHA-2 algorithms in any applications that 

use SHA-2 algorithms as their hash function 
5. A modified version provides a drop-in replacement for the SHA-1 algorithm in any 

application using that algorithm 
6. It is extendable to larger message digest sizes 

 
The submitted algorithm is limited to the requirements stated in the Request for 
Candidate Algorithm Nominations. Any additional requirements may require 
modifications to the proposed algorithm. 

 
 
1.8 Statements about Optical Media 
 

1.8.1 Reference Implementation in ANSI C with comments 
 

The reference implementation is presented on the companion CD in the folder 
\Reference Implementation. This implementation includes the header file defining 
the NIST test API; the reference implementation uses that API. 

 
1.8.2 Optimized Implementations in ANSI C with comments 

 
Implementations for 64-bit and 32-bit computers are presented on the companion 
CD in their respective folders. No optimization of the submitted algorithm is 
possible within the constraints of ANSI C, so these implementations are copies of 
the reference implementation. 

 
1.8.3 Supporting Documentation 

 
Electronic copies of all written materials have been provided in PDF on the 
companion CD in the folder \Supporting Documentation. 

 
 
2. Algorithm Specifications 
 
This document specifies a hash algorithm for four message digest sizes: 224 bits, 256 bits, 384 
bits and 512 bits. The first two use 32-bit words and a block size of 512 bits, similar to SHA-224 
and SHA-256; the last two use 64-bit words and a block size of 1024 bits, similar to SHA-384 
and SHA-512. Apart from the word size and the message digest size, the four algorithms are 
almost identical in their operations. They are presented separately below to avoid confusion. 
 
2.1. Definitions 
 
Unless noted otherwise, this document uses the same definitions, notation and conventions as 
used in The Secure Hash Standard, FIPS 180-3. 
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2.1.1. Operations on Words 
 
The following operations are applied to w-bit words and other integer values in all the algorithms 
presented in this document: 
 

1. Bitwise XOR (“exclusive-OR”) operation: ⊕ 
 

2. Bitwise complement operation: ¬ 
 

3. The right shift operation: >> 
 

4. The rotate right (circular right shift) operation ROTRn (x) where x is a w-bit word 
and n is an integer or integer variable with value between 0 and w. 

 
5. The rotate left (circular left shift) operation ROTLn (x) where x is a w-bit word and n 

is an integer or integer variable with value between 0 and w. 
 

6. Addition modulo 2w 
 

7. Addition with Carry 
 

The operation [v, z] = x + y + c is defined as follows. The words x and y represent 
integers X and Y, where 0 <= X < 2w and 0 <= Y < 2w. The variable c represents an 
integer C with value either 0 or 1 (the carry in). Compute 
  S = X + Y + C 
  Z = S mod 2w 

  and V = S >> w 
Convert the integers Z and V to a word and a bit respectively and define z = Z and     
v = V. This operation corresponds to the assembly language ADDC instruction. The 
[v,z] notation is taken from Verilog hardware description language. 

 
 
2.1.2. Parameters 
 
The following parameters are used in the algorithm specifications in this document 
 
 a0, a1, … a7 Working variables that are the w-bit words of state used in the 

computation of the hash values 
 
 c1, c2  Working variables that are the one-bit carry in and carry out of 

addition-with-carry operations 
 
 F  Fill data derived from the message M 
 
 H0 … H7 Working variables that are the w-bit words which accumulate the hash 

value. 
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 k  Number of fill bytes appended to a message during preparation 
 
 l  Length of the message, M, in bits 
 
 ll  Length of the message length l in bytes 
 
 M  The message to be hashed 
 
 P  The message M with padding bits appended 
 
 p  Length of the padded message in bytes 
 
 r  Working variable holding the number of bits to be rotated during the 

computation of hash values 
 
 T, T1, T2 Temporary w-bit words used in the hash computations 
 
 w  Number of bits in a word 
 
 Wt  The tth w-bit word of the message schedule 
 
 
2.1.3 Functions 
 
This specification includes no functions other than the operations stated above. 
 
 
2.1.4 Constants 
 
These algorithms use no constants other than the Initial Values for each hash computation. 
 
 
2.2 Message Length Management 
 
The message length l is stored in a multi-byte variable L such that the first byte of L holds the 
eight least-significant bits of l, the second byte holds the next eight bits and so on until the entire 
message length is accommodated. This is equivalent to the memory organization on an 8-bit 
little-endian microprocessor. Trailing zero bytes are eliminated and the resulting size (in bytes) 
of L is stored in a one-byte variable ll, the length of the length. For messages less than 256 bits 
in length, L is one byte long and ll holds the value 1. For messages longer than 255 bits but 
shorter than 65536 bits (216), L is two bytes long and ll holds the value 2. Longer messages are 
handled similarly. The maximum size of L is 255 bytes. Implementers of these algorithms may 
impose a lower limit on the size of L, thereby restricting the maximum length of messages that 
can be processed by that implementation. Implementers may also aggregate the bytes of L into 
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larger sized unsigned integers provided that such aggregation does not result in high order zero 
bytes being introduced. Typical aggregates may be 32-bit or 64-bit words. 
 

Discussion: The intention here is that there should be no practical limit on the length of 
messages that can be hashed but short messages should not be burdened with the 
overhead of accommodating potentially very large message lengths. 

 
 
2.3 Message Preparation 
 
Message preparation should take place before hash computation begins. This preparation consists 
of five steps: padding the message M if necessary, filling out the padded message P to the 
requisite length, appending the message lengths, parsing the resulting message into w-bit words, 
and finally appending the message checksums. 
 
 
2.3.1 Padding the Message 
 
If the length of the message M is an exact multiple of 8 bits, no padding is added and the padded 
message P is identical to the original message M.  Otherwise, the complement of the last bit of 
the message shall be appended repeatedly until the resulting length reaches the next exact 
multiple of 8 bits. The amount of padding added is at most seven bits. The length of the padded 
message in bytes is given by the formula 
  p = (l + 7) >> 3 
After this step, the padded message is handled in terms of bytes as they exist in computer 
memory rather than bits. The method of packing bits into bytes is left to the system designer 
since such packing will typically be done before passing the message to this algorithm. 
 
 
2.3.2 Filling Out the Padded Message 
 
The fill data F is the padded message P truncated to 13 bytes if necessary, unless the message M 
has zero length in which case F is 13 bytes of all zeros. The amount of fill data to be appended to 
the padded message depends on the block size and the message length. For a block size of 512 
bits and a message length less than 512 bits the number of fill bytes needed (k) is given by 
  k = 119 – p – ll 
For a block size of 512 bits and a message length greater than 511 bits the number of fill bytes 
needed is given by 
  k = 64 – ((p + ll + 9) mod 64) 
For a block size of 1024 bits and a message length less than 1024 bits the number of fill bytes 
needed is given by 
  k = 239 – p – ll 
For a block size of 1024 bits and a message length greater than 1023 bits the number of fill bytes 
needed is given by 
  k = 128 – ((p + ll + 17) mod 128) 
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The fill data F is concatenated with itself repeatedly until it reaches or exceeds k bytes in length, 
then it is truncated to k bytes and appended to the padded message P. 
 

Discussion: Ideally, the fill data should be a full block, 512 bits or 1024 bits depending 
on the message digest length. Unfortunately, for long messages presented in multiple 
pieces, the fill data has to be preserved across calls within the algorithm state structure. 
Saving a full block is not acceptable on an 8-bit microcontroller, so 13 bytes is a 
compromise. It is simply a prime number greater than 8 bytes so that there are no easily 
discernable patterns generated in the filled message. A smaller value can be specified if 
there is a good reason to do so. Filling with a constant value such as zero is seen as a 
security risk and so should be avoided. 

 
 
2.3.3 Appending the Message Lengths 
 
After the message has been filled to the appropriate length, the message length as held in the byte 
array L is appended to the message least significant byte first. The single byte ll, the length of 
the length, is then appended to the result to complete the assembled message. The latter should 
be two w-bit words short of an exact multiple of the block size. 
 
 
2.3.4 Parsing the Assembled Message 
 
After a message has been assembled as described above, it must be parsed into a number of w-bit 
words before the hash computation can begin. The first byte of the message becomes the least 
significant byte of the first w-bit word and successive bytes of the message become the 
progressively higher order bytes within the word. Successive words are defined similarly. Note 
that if the message buffer is word aligned on a little-endian processor, this step can be achieved 
with almost zero work by casting the buffer from an array of bytes to an array of w-bit words (or 
the equivalent union declaration). 
 
2.3.5 Appending the Checksums 
 
The final step in preparing the message is to append two w-bit checksum words. The first 
checksum is the complement of the sum modulo 2w of all the w-bit words in the parsed message. 
The second checksum is the sum modulo 2w of the complement of all the w-bit words in the 
parsed message: 
  checksum1 = ¬ ∑ Wt 
  checksum2 = ∑ (¬Wt) 
After the checksums have been appended to the parsed message, it should be an exact multiple of 
the block size for the selected algorithm. The message can now be given to the hash algorithm to 
compute the message digest. 
 

Discussion: The checksum calculations were chosen for the ease of implementation and 
efficiency of computation on 8-bit microprocessors. These checksums are the 
cornerstones of hash security. 
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2.4 Hash algorithm for 512-bit message digests 
 
The 512-bit algorithm uses eight 64-bit working variables, a0 to a7, eight 64-bit result variables, 
H0 to H7, and two single-bit carry variables, c1 and c2; these constitute the “state” of the 
algorithm carried from round to round. This algorithm also uses three 64-bit intermediate values, 
T, T1 and T2, and one intermediate integer value r used to hold a rotation factor. 
 
 
2.4.1 Initial Values 
 
Before hash computation begins, the working variables, a0 to a7, are initialized to the following 
eight 64-bit words in hex: 
 
  a0 = 6a09e667f3bcc908 

a1 = bb67ae8584caa73b 
a2 = 3c6ef372fe94f82b 

  a3 = a54ff53a5f1d36f1 
a4 = 510e527fade682d1 
a5 = 9b05688c2b3e6c1f 

  a6 = 1f83d9abfb41bd6b 
a7 = 5be0cd19137e2179 

 
These values are identical to the initial values for SHA-512, copied verbatim from FIPS 180-3. 
These words were obtained by taking the first sixty-four bits of the fractional parts of the square 
roots of the first eight prime numbers. All of the other variables are all initialized to zero. 
 
 
2.4.2 Hash Computation 
 
After the message has been prepared and the variables initialized, perform the following 
computations for each 64-bit word Wt in the prepared message: 
 

1. Compute the preliminary intermediate values using add-with-carry: 
 
  [c1,T1] = ( a5 ⊕ Wt ) + ( a1 ⊕ ROTL8 (a3) ) + c1 
  [c2,T2] = ( a0 ⊕ ROTR8 (Wt) ) + ( a4 ⊕ ROTR8 (a2) ) + c2 
 

2. Compute the rotation factor: 
 
  r  = 8 – (c1 + c2) 
 

3. Rotate the intermediate values: 
 

T1 = ROTLr (T1) 
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T2 = ROTRr (T2) 
 

4. Compute the next state: 
 
  T = ROTR7 (a0) 
  a0 = a1 ⊕ T2 
  a1 = a2 ⊕ T1 
  a2 = a3 ⊕ T2 
  a3 = a4 ⊕ T1 
  a4 = a5 ⊕ T2 
  a5 = a6 ⊕ T1 
  a6 = a7 ⊕ T2 
  a7 = T ⊕ T1 
 

5. Update the hash result variables: 
 
  H0 = H0 + a0 
  H1 = H1 + a1 
  H2 = H2 + a2 
  H3 = H3 + a3 
  H4 = H4 + a4 
  H5 = H5 + a5 
  H6 = H6 + a6 
  H7 = H7 + a7 
 
These five steps constitute one round of the algorithm. After repeating these steps for each word 
in the prepared message, the resulting 512-bit message digest of the message M is 
 
  H0 || H1 || H2 || H3 || H4 || H5 || H6 || H7 
 
Human-readable output is generated most significant byte first. 
 

Discussion: In a pure block cipher, the hash result variables, H0 to H7, would be updated 
only once per block. However, doing that has been shown to be a serious flaw in the 
SHA-2 family of hash functions. Consequently, these variables are updated in every 
round in the algorithms presented here. 

 
 
2.5 Hash algorithm for 384-bit message digests 
 
The 384-bit algorithm uses six 64-bit working variables, a0 to a5, six 64-bit result variables, H0 
to H5, and two single-bit carry variables, c1 and c2; these constitute the “state” of the algorithm 
carried from round to round. This algorithm also uses three 64-bit intermediate values, T, T1 and 
T2, and one intermediate integer value r used to hold a rotation factor. 
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2.5.1 Initial Values 
 
Before hash computation begins, the working variables, a0 to a5, are initialized to the following 
six 64-bit words in hex: 
 
  a0 = cbbb9d5dc1059ed8 

a1 = 629a292a367cd507 
a2 = 9159015a3070dd17 

  a3 = 152fecd8f70e5939 
a4 = 67332667ffc00b31 
a5 = 8eb44a8768581511 

 
These values are identical to the initial values for SHA-384, copied verbatim from FIPS 180-3. 
These words were obtained by taking the first sixty-four bits of the fractional parts of the square 
roots of the ninth through fourteenth prime numbers. All of the other variables are all initialized 
to zero. 
 
 
2.5.2 Hash Computation 
 
After the message has been prepared and the variables initialized, perform the following 
computations for each 64-bit word Wt in the prepared message: 
 

1. Compute the preliminary intermediate values using add-with-carry: 
 
  [c1,T1] = ( a5 ⊕ Wt ) + ( a1 ⊕ ROTL8 (a3) ) + c1 
  [c2,T2] = ( a0 ⊕ ROTR8 (Wt) ) + ( a4 ⊕ ROTR8 (a2) ) + c2 
 

2. Compute the rotation factor: 
 
  r  = 8 – (c1 + c2) 
 

3. Rotate the intermediate values: 
 

T1 = ROTLr (T1) 
T2 = ROTRr (T2) 

 
4. Compute the next state: 

 
  T = ROTR7 (a0) 
  a0 = a1 ⊕ T2 
  a1 = a2 ⊕ T1 
  a2 = a3 ⊕ T2 
  a3 = a4 ⊕ T1 
  a4 = a5 ⊕ T2 
  a5 = T ⊕ T1 
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5. Update the hash result variables: 

 
  H0 = H0 + a0 
  H1 = H1 + a1 
  H2 = H2 + a2 
  H3 = H3 + a3 
  H4 = H4 + a4 
  H5 = H5 + a5 
 
These five steps constitute one round of the algorithm. After repeating these steps for each word 
in the prepared message, the resulting 384-bit message digest of the message M is 
 
  H0 || H1 || H2 || H3 || H4 || H5 
 
Human-readable output is generated most significant byte first. 
 
 
2.6 Hash algorithm for 256-bit message digests 
 
The 256-bit algorithm uses eight 32-bit working variables, a0 to a7, eight 32-bit result variables, 
H0 to H7, and two single-bit carry variables, c1 and c2; these constitute the “state” of the 
algorithm carried from round to round. This algorithm also uses three 32-bit intermediate values, 
T, T1 and T2, and one intermediate integer value r used to hold a rotation factor. 
 
 
2.6.1 Initial Values 
 
Before hash computation begins, the working variables, a0 to a7, are initialized to the following 
eight 32-bit words in hex: 
 
  a0 = 6a09e667 

a1 = bb67ae85 
a2 = 3c6ef372 

  a3 = a54ff53a 
a4 = 510e527f 
a5 = 9b05688c 

  a6 = 1f83d9ab 
a7 = 5be0cd19 

 
These values are identical to the initial values for SHA-256, copied verbatim from FIPS 180-3. 
These words were obtained by taking the first thirty-two bits of the fractional parts of the square 
roots of the first eight prime numbers. All of the other variables are all initialized to zero. 
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2.6.2 Hash Computation 
 
After the message has been prepared and the variables initialized, perform the following 
computations for each 32-bit word Wt in the prepared message: 
 

1. Compute the preliminary intermediate values using add-with-carry: 
 
  [c1,T1] = ( a5 ⊕ Wt ) + ( a1 ⊕ ROTL8 (a3) ) + c1 
  [c2,T2] = ( a0 ⊕ ROTR8 (Wt) ) + ( a4 ⊕ ROTR8 (a2) ) + c2 
 

2. Compute the rotation factor: 
 
  r  = 8 – (c1 + c2) 
 

3. Rotate the intermediate values: 
 

T1 = ROTLr (T1) 
T2 = ROTRr (T2) 

 
4. Compute the next state: 

 
  T = ROTR7 (a0) 
  a0 = a1 ⊕ T2 
  a1 = a2 ⊕ T1 
  a2 = a3 ⊕ T2 
  a3 = a4 ⊕ T1 
  a4 = a5 ⊕ T2 
  a5 = a6 ⊕ T1 
  a6 = a7 ⊕ T2 
  a7 = T ⊕ T1 
 

5. Update the hash result variables: 
 
  H0 = H0 + a0 
  H1 = H1 + a1 
  H2 = H2 + a2 
  H3 = H3 + a3 
  H4 = H4 + a4 
  H5 = H5 + a5 
  H6 = H6 + a6 
  H7 = H7 + a7 
 
These five steps constitute one round of the algorithm. After repeating these steps for each word 
in the prepared message, the resulting 256-bit message digest of the message M is 
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  H0 || H1 || H2 || H3 || H4 || H5 || H6 || H7 
 
Human-readable output is generated most significant byte first. 
 
 
2.7 Hash algorithm for 224-bit message digests 
 
The 224-bit algorithm uses seven 32-bit working variables, a0 to a6, seven 32-bit result 
variables, H0 to H6, and two single-bit carry variables, c1 and c2; these constitute the “state” of 
the algorithm carried from round to round. This algorithm also uses three 32-bit intermediate 
values, T, T1 and T2, and one intermediate integer value r used to hold a rotation factor. 
 
 
2.7.1 Initial Values 
 
Before hash computation begins, the working variables, a0 to a6, are initialized to the following 
seven 32-bit words in hex: 
 
  a0 = c1059ed8 

a1 = 367cd507 
a2 = 3070dd17 

  a3 = f70e5939 
a4 = ffc00b31 
a5 = 68581511 

  a6 = 64f98fa7 
 
These values are identical to the initial values for SHA-224, copied verbatim from FIPS 180-3 
Change Notice 1. All of the other variables are all initialized to zero. 
 
 
2.7.2 Hash Computation 
 
After the message has been prepared and the variables initialized, perform the following 
computations for each 32-bit word Wt in the prepared message: 
 

1. Compute the preliminary intermediate values using add-with-carry: 
 
  [c1,T1] = ( a5 ⊕ Wt ) + ( a1 ⊕ ROTL8 (a3) ) + c1 
  [c2,T2] = ( a0 ⊕ ROTR8 (Wt) ) + ( a4 ⊕ ROTR8 (a2) ) + c2 
 

2. Compute the rotation factor: 
 
  r  = 8 – (c1 + c2) 
 

3. Rotate the intermediate values: 
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T1 = ROTLr (T1) 
T2 = ROTRr (T2) 

 
4. Compute the next state: 

 
  T = ROTR7 (a0) 
  a0 = a1 ⊕ T2 
  a1 = a2 ⊕ T1 
  a2 = a3 ⊕ T2 
  a3 = a4 ⊕ T1 
  a4 = a5 ⊕ T2 
  a5 = a6 ⊕ T1 
  a6 = T ⊕ T2 
 

5. Update the hash result variables: 
 
  H0 = H0 + a0 
  H1 = H1 + a1 
  H2 = H2 + a2 
  H3 = H3 + a3 
  H4 = H4 + a4 
  H5 = H5 + a5 
  H6 = H6 + a6 
 
These five steps constitute one round of the algorithm. After repeating these steps for each word 
in the prepared message, the resulting 224-bit message digest of the message M is 
 
  H0 || H1 || H2 || H3 || H4 || H5 || H6 
 
Human-readable output is generated most significant byte first. 
 
 
2.8 Design Rationale 
 
This proposal explicitly targets implementation on 8-bit microcontrollers, so the operations 
involved are restricted to those found in all microprocessors – addition, word rotation, bitwise 
complement and exclusive-or. The rotation factors are chosen so that they can be accomplished 
by a byte shuffle followed by an optional one-bit shift (occasionally repeated). Addition and 
exclusive-or operations do not commute with each other, so these operations are interleaved in 
the computation. 
 
The proposed algorithms are intended as drop-in replacements for the corresponding SHA-2 
algorithms, so they mimic the SHA-2 algorithms where it is prudent to do so – initial values, 
block size, and partitioning the message. The objective is to minimize the changes needed in 
applications currently using SHA-2 algorithms when upgrading to these algorithms. 
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The proposed algorithms differ from the SHA-2 family in that the internal state is kept separate 
and distinct from the hash value output, and the latter is not recirculated into any subsequent 
computations. In contrast to the Merkle-Damgard construct in which only the hash value passes 
from block to block, here both the hash value and the internal state are passed along. The internal 
state is discarded at the end of the hash computation. 
 
Previous research indicates that a collision in the hash function often stems from a collision in 
the internal compression function, leading to a desire for a collision-free compression function. 
This proposal takes the alternative approach of deliberately permitting a multitude of collisions 
in the compression function, most of which are false trails leading nowhere. Evaluating all the 
possible predecessors to any given intermediate result is computationally difficult. The 
intermediate results are used to generate the next internal state and then discarded. The net effect 
in the pattern of 1s and 0s in the internal state is similar to an interference pattern obtained when 
shining light through a grating. Note that every variable changes in every round so that there are 
no short-cuts for working backward through the algorithm. 
 
The objective of the hash computation algorithm is to deny computational feasibility in an attack. 
The objective of the message preparation is to deny flexibility in the choice of inputs to the hash 
computations. The two strategies acting together create the overall algorithm security. 
 
The minimum number of rounds is 32, enforced by the message preparation procedure. A 
number smaller than this raises the concern that cryptanalysis may be possible. 
 
 
3. Security Analysis 
 
These algorithms are believed to be resistant to all known attacks and also to all the rumored 
attacks currently being investigated. A brief examination of each of the well known attacks is 
presented below. At the time of submission, there are no published materials analyzing the 
security of the submitted algorithm. Consequently, all analysis is from first principles but draws 
on material in the following publications: 
 

“Design and Analysis of Hash Functions”, Murali Krishna Reddy Danda 
http://wallaby.vu.edu.au/adt-VVUT/uploads/approved/adt-
VVUT20070911.160040/public/01front.pdf 

 
 “Hash functions: Theory, attacks and applications”, Ilya Mironov 

http://research.microsoft.com/users/mironov/papers/hash_survey.pdf 
 
 “Multi-collision Attack on the Compression Functions of MD4 and 3-pass HAVAL”, 
 Hongbo Yu and Xiaoyum Wang 
 Information Security and Cryptology – ICISC, ISBN 3540767878 
 

“Second Preimages on n-bit Hash Functions for Much Less than 2n Work”, 
John Kelsey and Bruce Schneider 
http://www.schneier.com/paper-preimages.pdf 
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“A Tutorial on Linear and Differential Cryptanalysis”, Howard M. Heys 
http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf 

 
“Linear and Differential Cryptanalysis”, Benjamin Toft Jakobsen, Mehdi Abyar, and 
Peter Sebastian Nordholt 
http://www.daimi.au.dk/~ivan/LinDifAnalyse.pdf 
 

 
3.1 First Preimage Finding 
 
The message preparation method imposes rigid constraints on the last three words in the message 
schedule. As an attacker moves forward through the algorithm, his freedom of choice in the 
inputs disappears and the computation can no longer be directed towards the goal. In each round, 
the attacker has w bits of input to influence 6w to 8w bits of state – each change in the input is 
magnified and ripples outward through the rest of the computation. 
 
Working backwards to find a message which hashes to a particular value, an attacker must 
choose an internal state for the start of the checksums round and a pair of checksums. Using the 
256-bit message digest as an example, there are 2322 possible initial choices, each of which may 
or may not lead to a solution. Processing forward from the chosen internal state with the chosen 
checksums gives the increments which will be added to the previous partial hash value to create 
the given message digest. Subtracting these increments from the given message digest yields the 
partial hash value required going into the checksum rounds. The attacker must then find a 
message which generates the chosen internal state, generates the chosen checksums, and 
generates the derived partial hash value, all at the same time; one message must meet all three 
requirements. Finding messages that generate the chosen checksums is essentially a first-
preimage attack on a two word message digest. The other two parts are equivalent to a first-
preimage attack on a double sized message digest in SHA-2. The overall difficulty level for this 
approach is estimated at greater than a brute-force attack. 
 
 
3.2 Second Preimage Finding 
 
Given a first message m1, an attacker can compute all the intermediate states and partial sums 
along the way to the message digest. Finding another message, different from the first, which 
generates some matching intermediate state and partial sum is not useful because the second 
message must also have the same checksums as the first message; otherwise the very last round 
will create a message digest different from that of the first message. Trying to match the 
checksums instead and working backward from there is a specific case of first preimage finding 
discussed above – the second message still has to generate the same internal state as the first 
message just prior to hashing the checksums. Directly or indirectly, the attacker is forced to 
chose a pair of checksums, effectively at random, and then hope for a solution – this is 
essentially a brute-force attack. 
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3.3 Collision Finding 
 
A Birthday Attack will succeed against all hash algorithms, including this one; the only defense 
is to increase the size of the message digest. Apart from the Birthday attack, there is no 
systematic way with this algorithm for generating messages with the same hash value. There is 
no good starting point for an attack. Starting with a first message is equivalent to the second 
preimage finding case discussed above.  Starting elsewhere leads to one of the previous cases. 
 
 
3.4 Multi-Collision Attack 
 
These algorithms have the property that in general a collision is a dead end that goes nowhere. 
Given two messages A and B such that Hash(A) = Hash(B) then, in general, for any third 
message C, Hash (A||C) is NOT equal to Hash (B||C) and Hash(C||A) is NOT equal to 
Hash(C||B) where || denotes concatenation of the messages. Consequently, an attempt to find a 
three-way collision is effectively a Birthday attack followed by a First Preimage attack. 
Additional collisions can only be found by additional First Preimage attacks. 
 
Constructing multi-collisions by the method proposed by Antoine Joux first requires a Birthday 
attack on the message digest and the internal state together. These contain n bits and n+2 bits 
respectively, so the initial Birthday attack involves 2(2n+2)/2 = 2n+1 operations. The subsequent 
Birthday attack to get the second half of the construction requires an additional 2n/2 operations. 
 
 
3.5 Length Extension Attack 
 
The message digest from a particular message has no relevance for hashing an extended 
message. The internal state at the end of the hash computation for the original message never 
appears in the external world so an attacker has no place to start from. To obtain the message 
digest for an extended message, the attacker must first recover the original message. Lengthening 
the message then changes the location of the start of the fill zone, the length encoding, and the 
checksums. Hashing the lengthened message is unlikely to generate the original message digest 
as a partial sum at any time. The conclusion is that no such attack is possible. 
 
 
3.6 Keyed Hashing and Differential Cryptanalysis 
 
In keyed hashing, either the message to be hashed is prefixed by a secret key or the Initial Value 
for the hash function is replaced by a secret key; otherwise the hash function operates as before. 
Differential cryptanalysis is an attack aimed at discovering the secret key by hashing messages 
with small differences between them. 
 
With the proposed algorithm, a change in a single bit in the input message also means a 
difference in one or both of the checksums – the prepared message then has multiple bit changes. 
There are messages that have the same checksums, but then the differences in the message body 
are not simple. An analysis of the algorithm core shows that changing a single bit in the input 
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leads to changes in approximately half the bits of internal state within 8 to 12 rounds. This 
translates to changes throughout the final message digest. Without monitoring the partial hash 
values for every round, a bit change in the message digest cannot be traced back to any particular 
round - an observed change in the message digest may be the end result of multiple bit changes. 
All paths through the compression function to the intermediate values T1 and T2 are deliberately 
equidistant (except for those that pass through the carry bits) so there is no bias towards any 
particular word of state. There are so many paths through the system feeding into each bit in the 
message digest that no meaningful analysis is possible and no meaningful data can be extracted. 
 
 
3.7 HMAC 
 
The Keyed-Hash Message Authentication Code (HMAC) is specified in FIPS publication 198. 
The proposed algorithm is suitable for use in the HMAC standard in place of the corresponding 
SHA-2 algorithm. In HMAC, a secret key K is used to create a derived key K0 which is then 
used in the following operation 
 
 HMAC (K, text)t = Hash ((K0 ⊕ opad) || (Hash ((K0 ⊕ ipad) || text))t 
 
where opad and ipad are fixed byte patterns and the result is limited to t bytes. The HMAC result 
has a value known to an attacker, as is the block size of both the input and output of the hash 
function. The attacker wishes to find a key K’ such that 
 
 HMAC (K’, text)t = HMAC (K, text)t 
 
The steps involved in the attack are 

1. Add the input and output block sizes to get the intermediate message length 
2. Find a new message of that length that hashes to the final result 
3. Exclusive-or the first block of the new message with opad to get the proposed K’ 
4. Calculate V = Hash ((K’ ⊕ ipad) || text) 
5. Compare V with the second block from step 2; if they match, security is broken 

 
All of these steps are relatively simple except for step 2. Step 2 is a first preimage attack on the 
underlying hash function with a message of a specified length. Consequently, the security of the 
HMAC construct is equal to the security of the underlying hash function multiplied by a factor 
that depends on the block size and the parameter t. 
 
 
3.8 Pseudo Random Functions (PRFs) 
 
NIST Special Publication 800-90, “Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators”, specifies two constructs that can use the submitted hash 
function in place of the corresponding SHA-2 algorithm to generate pseudo-random bit streams. 
These constructs are the Hash DRBG and the HMAC DRBG. In both cases, the output from a 
first hash computation is used as part of the input to a second hash computation and the 
generated result of the construct is the message digest output from the second hash computation 
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or multiple such message digests concatenated together. The requirement for such a construct is 
that the generated bitstream be indistinguishable from random. 
 
The submitted algorithm uses only the operations of addition modulo 2w, word rotation, bitwise 
complement and exclusive-or. Over the set of all possible inputs, each of these operations 
generates all the possible output values with equal probability. In addition, each bit position 
within an output word can be either 0 or 1 independently of any other bits in the word. The final 
message digest of the hash computation is the net result of many operations, so each bit position 
in the message digest has many opportunities to change its value. The Central Limit Theorem in 
statistics indicates that the probability of any bit in the message digest being a specific value, 
either 0 or 1, is approximately one half. Consequently, the generated bitstream will give the 
appearance of being random. 
 
 
3.9 Randomized Hashing 
 
The draft NIST Special Publication 800-106, “Randomized Hashing for Digital Signatures”, 
specifies the method of modifying a message Ms with a random variable rv prior to being input 
to the hash computation. The submitted algorithm can be used as the hash function in this 
randomization method, replacing the corresponding SHA-2 algorithm. The modified message M 
is defined by 
 
  M = rv || ((Ms || padding) ⊕ Rv) || rv_length_indicator 
 
Where Rv is rv concatenated with itself the appropriate number of times and the length indicator 
is the length of rv expressed as a 16-bit integer and then bit-reversed. 
 
Given the message Ms and random variable rv, an attacker wishes to find a second message m’ 
and a second random variable r’, different from Ms and rv, such that the hash computation yields 
the same result. The steps involved in the attack are 

1. Find a message M’ such that Hash (M’) = Hash (M) and M’ has six to eight trailing zeros 
2. Remove the last 16 bits of M’ to get the length of r’ 
3. Remove r’ from the start of M’, leaving a remainder Mx 
4. Concatenate r’ with itself appropriately and exclusive-or with Mx 
5. Remove trailing zeros from the result, and 
6. Remove the last ‘1’ bit to get m’ 

After the first step, the procedure is relatively simple, so the only difficulty is in finding the 
message M’ such that Hash (M’) = Hash (M). This is a first preimage attack on the hash function 
so the security of the randomization method is effectively equal to the security of the underlying 
hash function. 
 
 
3.10 Digital Signatures 
 
The Digital Signature Standard (DSS) is specified in FIPS publication 186-3. This standard 
specifies three algorithms for digital signatures: the Digital Signature Algorithm (DSA), the RSA 
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Digital Signature Algorithm, and the Elliptical Curve Digital Signature Algorithm (ECDSA). 
Each of these algorithms uses a hash function in its computations. The submitted algorithm is 
suitable for use in all three algorithms, replacing the corresponding SHA-2 algorithm wherever 
the latter is used. The security of the digital signatures generated by each of the digital signature 
algorithms is at least equal to the security of the underlying hash function 
 
 
3.11 Key Establishment 
 
NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key Establishment 
Schemes Using Discrete Logarithm Cryptography”, is concerned with the distribution of secret 
keys to authorized users. During key establishment, an entity may be required to compute a 
MacTag using an Approved MAC algorithm such as HMAC, which in turn must use an 
approved hash function such as SHA-2. The proposed algorithm can be used in place of the 
SHA-2 function. Such replacement can also be done in all other applications that use the SHA-2 
hash functions. 
 
 
 
 
 
 
 
Acknowledgement 
 
The author wishes to thank the members of the SHA-3 Hash Forum for their timely assistance in 
completing this project. 
 
 
 
 



 24

APPENDIX A 
 
Given the large number of applications using SHA-1 at the time of submission, it seems prudent 
to specify a drop-in replacement for that algorithm to ease the transition to the SHA-3 
algorithms. This specification is given below. 
 
 
A.1 Hash algorithm for 160-bit message digests 
 
The 160-bit algorithm uses six 32-bit working variables, a0 to a5, five 32-bit result variables, H0 
to H4, and two single-bit carry variables, c1 and c2; these constitute the “state” of the algorithm 
carried from round to round. This algorithm also uses three 32-bit intermediate values, T, T1 and 
T2, and one intermediate integer value r used to hold a rotation factor. 
 
 
A.1.1 Initial Values 
 
Before hash computation begins, the working variables, a0 to a5, are initialized to the following 
six 32-bit words in hex: 
 
  a0 = 67452301 

a1 = efcdab89 
a2 = 98badcfe 

  a3 = 10325476 
a4 = c3d2e1f0 
a5 = 0 (zero) 

 
These values, except the last, are identical to the initial values for SHA-1, copied verbatim from 
FIPS 180-3. All of the other variables are all initialized to zero. 
 
 
A.1.2 Hash Computation 
 
Message preparation is performed as specified above for the 256-bit hash computation. After the 
message has been prepared and the variables initialized, perform the following computations for 
each 32-bit word Wt in the prepared message: 
 

1. Compute the preliminary intermediate values: 
 
  [c1,T1] = ( a5 ⊕ Wt) + ( a1 ⊕ ROTL8 (a3) ) + c1 
  [c2,T2] = ( a0 ⊕ ROTR8 (Wt) ) + ( a4 ⊕ ROTR8 (a2) ) + c2 
 

2. Compute the rotation factor: 
 
  r  = 8 – (c1 + c2) 
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3. Rotate the intermediate values: 
 

T1 = ROTLr (T1) 
T2 = ROTRr (T2) 

 
4. Compute the next state: 

 
  T = ROTR7 (a0) 
  a0 = a1 ⊕ T2 
  a1 = a2 ⊕ T1 
  a2 = a3 ⊕ T2 
  a3 = a4 ⊕ T1 
  a4 = a5 ⊕ T2 
  a5 = T ⊕ T1 
 

5. Update the hash result variables: 
 
  H0 = H0 + a0 
  H1 = H1 + a1 
  H2 = H2 + a2 
  H3 = H3 + a3 
  H4 = H4 + a4 
 
These five steps constitute one round of the algorithm. After repeating these steps for each word 
in the prepared message, the resulting 160-bit message digest of the message M is 
 
  H0 || H1 || H2 || H3 || H4 
 
Human-readable output is generated most significant byte first. 
 
 
 


