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The Hash Function Family: Lesamnta SHA-3 Proposal

1 Introduction

This document specifies a family of hash functions,Lesamnta1, which consists of four algorithms:
Lesamnta-224, Lesamnta-256, Lesamnta-384, and Lesamnta-512. The four algorithms differ in
terms of the sizes of the blocks and words of data that are usedduring hashing. Figure 1 summarizes
the basic properties of all four Lesamnta algorithms.

Algorithm Message length Block size Word size Message digest sizeSecurity2

(bits) (bits) (bits) (bits) (bits)

Lesamnta-224 < 264 256 32 224 112
Lesamnta-256 < 264 256 32 256 128
Lesamnta-384 < 2128 512 64 384 192
Lesamnta-512 < 2128 512 64 512 256

Figure 1: Lesamnta algorithm properties

2 Definitions

2.1 Glossary of Terms and Acronyms

The following definitions are used throughout this specification.

Bit A binary digit having a value of 0 or 1.
Byte A group of eight bits.
Block Cipher Key A cryptographic key used by the Key Expansion routine to generate a set

of Round Keys.
Compression function A function mapping the (i − 1)th hash valueH(i−1) and theith message

block M(i) to theith hash valueH(i).
Key Expansion A routine used to generate a series of Round Keys from the Block Cipher

Key.
Output function A function mapping the (N − 1)th hash valueH(N−1) and theN th message

block M(N) to the final hash valueH(N).
Round Key Values derived from the Block Cipher Key by the Key Expansion

routine; they are applied to the SubState256 and SubState512 data in
the Compression and Output functions.

State An intermediate hash value.
SubState256 A 64-bit unit of data used in Lesamnta-256; it can be pictured as a

rectangular array of bytes with two rows and four columns.

1Lesamnta is pronounced like ”Lezanta”
2In this context, “security” refers to the fact that a birthday attack on a message digest of sizen produces a collision

with a workfactor of approximately 2n/2.

Document version 1.0, Date: 30 October 2008
5



The Hash Function Family: Lesamnta SHA-3 Proposal

SubState512 A 128-bit unit of data used in Lesamnta-512; it can be pictured as a
rectangular array of bytes with four rows and four columns.

S-box A non-linear substitution table used in several byte substitution
transformations and in the Key Expansion routine to performone-for-one
substitution of a byte value.

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on the
Lesamnta algorithm.

2.2 Algorithm Parameters and Symbols

The specification uses the following parameters and symbols.

C(round) Theroundth round constant.
H(i) The ith hash value.H(0) is the initial hash value;H(N) is thefinal hash

value and is used to determine the message digest.
H(i)

j The jth word of theith hash value, whereH(i)
0 is the leftmost word of hash

valuei.
K(round) Theroundth Round Key.
l The length of the messageM in bits.
m The number of bits in a message blockM(i).
M The message to be hashed.
M(i) The message blocki, with a size ofm bits.
M(i)

j The jth word of theith message block, whereM(i)
0 is the leftmost word of

message blocki.
N The number of blocks in the padded message.
Nr comp256 The number of rounds for theCompression256() function. For this

document,Nr comp256 is 32.
Nr comp512 The number of rounds for theCompression512() function. For this

document,Nr comp512 is 32.
Nr out256 The number of rounds for theOutput256() function. For this

document,Nr out256 is 32.
Nr out512 The number of rounds for theOutput512() function. For this

document,Nr out512 is 32.
w The number of bits in a word.
x j Thew-bit word of the State.
XOR The exclusive OR operation.
⊕ The exclusive OR operation.
∨ The OR operation.
• Finite field multiplication.
|| Concatenation.
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2.3 Functions

The specification uses the following functions.

AddRoundKey256() A transformation used inCompression256() andOutput256(), in
which a Round Key is added to a SubState256 by using an XOR
operation. The length of the Round Key equals the size of the
SubState256.

AddRoundKey512() A transformation used inCompression512() andOutput512(), in
which a Round Key is added to a SubState512 by using an XOR
operation. The length of the Round Key equals the size of the
SubState512.

ByteTranspos256() A function used in the Key Expansion routines, which takes an8-byte
word and performs a bytewise transposition.

ByteTranspos512() A function used in the Key Expansion routines, which takes a 16-byte
word and performs a bytewise transposition.

Compression256() The Compression function of Lesamnta-256.
Compression512() The Compression function of Lesamnta-512.
EncComp256 The encryption function of the block cipher used in the Compression

function of Lesamnta-256.
EncComp512 The encryption function of the block cipher used in the Compression

function of Lesamnta-512.
EncOut256 The encryption function of the block cipher used in the Output function

of Lesamnta-256.
EncOut512 The encryption function of the block cipher used in the Output function

of Lesamnta-512.
F256 A non-linear transformation used in a round, consisting of

AddRoundKey256(), SubBytes256(), ShiftRows256(), and
MixColumns256().

F512 A non-linear transformation used in a round, consisting of
AddRoundKey512(), SubBytes512(), ShiftRows512(), and
MixColumns512().

FK The round function of the key scheduling function.
FM The round function of the mixing function.
KeyExpComp256() The Key Expansion routine used inEncComp256.
KeyExpComp512() The Key Expansion routine used inEncComp512.
KeyExpOut256() The Key Expansion routine used inEncOut256.
KeyExpOut512() The Key Expansion routine used inEncOut512.
KeyLinear256() A linear function used in the Key Expansion routine

KeyExpComp256().
KeyLinear512() A linear function used in the Key Expansion routine

KeyExpComp512().
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MixColumns256() A transformation used inCompression256() and Output256(),
which takes all of the columns of a SubState256 and mixes their data
(independently of one another) to produce new columns.

MixColumns512() A transformation used inCompression512() and Output512(),
which takes all of the columns of a SubState512 and mixes their data
(independently of one another) to produce new columns.

Output256() The Output function used in Lesamnta-256.
Output512() The Output function used in Lesamnta-512.
ShiftRows256() A transformation used inCompression256() and Output256(),

which processes a SubState256 by cyclically shifting the second row of
the SubState256 by one byte.

ShiftRows512() A transformation used inCompression512() and Output512(),
which processes a SubState512 by cyclically shifting the last three rows
of the SubState512 by different offsets.

SubBytes256() A transformation used inCompression256() and Output256(),
which processes a SubState256 by using a non-linear byte substitution
table (i.e., the S-box) that operates independently on eachof the
SubState256 bytes.

SubBytes512() A transformation used inCompression512() and Output512(),
which processes a SubState512 by using a non-linear byte substitution
table (i.e., the S-box) that operates independently on eachof the
SubState512 bytes.

SubWords256() A function used in the Key Expansion routinesKeyExpComp256()
andKeyExpOut256(), which takes 8 bytes from two input words and
applies a non-linear byte substitution table (i.e., the S-box) to each of the
8 bytes to produce two output words.

SubWords512() A function used in the Key Expansion routinesKeyExpComp512() and
KeyExpOut512(), which takes 16 bytes from two input words and
applies a non-linear byte substitution table (i.e., the S-box) to each of
the 16 bytes to produce two output words.

WordRotation256() A function used inCompression256(), Output256(), and the Key
Expansion routines, which takes eight 32-bit words and performs a cyclic
permutation.

WordRotation512() A function used inCompression512(), Output512(), and the Key
Expansion routines, which takes eight 64-bit words and performs a cyclic
permutation.
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3 Notation and Conventions

3.1 Inputs and Outputs

Lesamnta takes a message with less than 264 bits (for Lesamnta-224 and Lesamnta-256) or 2128 bits
(for Lesamnta-384 and Lesamnta-512) and outputs a message digest. The message digest ranges in
length from 224 to 512 bits, depending on the algorithm.

3.2 Bytes

All byte values in the Lesamnta algorithm are presented as a concatenation of the individual bit
values (0 or 1) between braces, in the order{b0, b1, b2, b3, b4, b5, b6, b7}. These bytes are interpreted
as finite field elements by using a polynomial representation:

b0x7 + b1x6 + b2x5 + b3x4 + b4x3 + b5x2 + b6x + b7 =

7∑

i=0

b7−ix
i.

For example,{01100011} identifies the specific finite field elementx6 + x5 + x + 1.
It is also convenient to denote byte values by hexadecimal notation, with each of two groups of

four bits being denoted by a single character, as illustrated in Fig. 2.

Bit pattern Character
0000 0

0001 1

0010 2

0011 3

Bit pattern Character
0100 4

0101 5

0110 6

0111 7

Bit pattern Character
1000 8

1001 9

1010 a

1011 b

Bit pattern Character
1100 c

1101 d

1110 e

1111 f

Figure 2: Hexadecimal representations of bit patterns

Hence, the element{01100011} can be represented as{63}, where the character denoting the
four-bit group containing the higher-numbered bits is to the left.

Some finite field operations involve one additional bit (b−1) to the left of an 8-bit byte. Where
this extra bit is present, it appears as ‘{01}’ immediately preceding the 8-bit byte; for example, a
9-bit sequence is presented as{01}{1b}.

3.3 Arrays of Bytes

Arrays of bytes are represented in the following form:

a0, a1, . . . , a7.

The bytes and the bit ordering within bytes are derived from a64-bit input sequence

input0, input1, . . . , input63,
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as follows:

a0 = {input0, input1, . . . , input7},
a1 = {input8, input9, . . . , input15},

...

a7 = {input56, input57, . . . , input63}.

The pattern can be extended to longer sequences (i.e., for Lesamnta-384/512), so that, in general,

an = {input8n, input8n+1, . . . , input8n+7}.

Taking the notation of Secs. 3.2 and 3.3 together, Fig. 3 shows how the bits within each byte are
numbered.

Input bit sequence 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
Byte number 0 1 . . .
Bit number in byte 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 . . .
Bit number in word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Figure 3: Indices for bytes and bits

3.4 Endian

Throughout this document, the big-endian convention is followed in expressing both 32- and 64-bit
words, so that within each word, the most significant bit is stored in the leftmost bit position.

3.5 Bit Strings

A word is aw-bit string that can be represented as a sequence of hexadecimal, or hex, digits. To
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent, as shown in
Fig. 2. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed asa103fe23, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011

0011 0010 1110 1111 0011 0000 0001 1010

can be expressed asa103fe2332ef301a.
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3.6 Message Block

For the Lesamnta algorithms, the size of themessage block- m bits - depends on the algorithm.

1. For Lesamnta-224 and Lesamnta-256, each message block has256 bits, which are
represented as a sequence of eight32-bit words.

2. For Lesamnta-384 and Lesamnta-512, each message block has512 bits, which are
represented as a sequence of eight64-bit words.

3.7 SubState256

For a 64-bit part of a state, the Lesamnta-224 and Lesamnta-256 algorithms’ operations are
performed on a two-dimensional array of bytes called aSubState256. The SubState256 consists
of two rows of bytes, each containing four bytes. In a SubState256 array, denoted by the symbols,
each individual byte has two indices, with its row numberr in the range 0≤ r < 2 and its column
numberc in the range 0≤ c < 4. This allows an individual byte of the SubState256 to be referred
to as eithersr,c or s[r, c].

At the start of theF256 function in each round ofCompression256() andOutput256(), as
described in Sec. 5.3, the input - the array of bytesin0, in1, . . . , in7 - is copied into the SubState256
array, as illustrated in Fig. 4. TheCompression256()orOutput256() function is then executed
on this SubState256 array, after which the array’s final set of values is copied to the output: an array
of bytesout0, out1, . . . , out7.

SubState256Input bytes Output bytes

in0

in1

in2

in3

in4

in5

in6

in7

s0,0

s1,0

s0,1

s1,1

s0,2

s1,2

s0,3

s1,3

out0

out1

out2

out3

out4

out5

out6

out7

Figure 4: SubState256 array input and output

Hence, at the beginning of theF256 function, the input arrayin is copied to the SubState256
array, according to this scheme:

s[r, c] = in[r + 2c], for 0 ≤ r < 2 and 0≤ c < 4,

and at the end of theF256 function, the SubState256 array is copied to the output array out as
follows:

out[r + 2c] = s[r, c], for 0 ≤ r < 2 and 0≤ c < 4.
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3.8 SubState512

For a 128-bit part of a state, the Lesamnta-384 and Lesamnta-512 algorithms’ operations are
performed on a two-dimensional array of bytes called aSubState512. The SubState512 consists
of four rows of bytes, each containing four bytes. In a SubState512 array, denoted by the symbols,
each individual byte has two indices, with its row numberr in the range 0≤ r < 4 and its column
numberc in the range 0≤ c < 4. This allows an individual byte of the SubState512 to be referred
to as eithersr,c or s[r, c].

At the start of theF512 function in each round ofCompression512() andOutput512(), as
described in Sec. 5.5, the input - the array of bytesin0, in1, . . . , in15 - is copied into the SubState512
array, as illustrated in Fig. 5. TheCompression512()orOutput512() function is then executed
on this SubState512 array, after which the array’s final set of values is copied to the output: an array
of bytesout0, out1, . . . , out15.

SubState512Input bytes Output bytes

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

Figure 5: SubState512 array input and output

Hence, at the beginning of theF512 function, the input arrayin is copied to the SubState512
array, according to this scheme:

s[r, c] = in[r + 4c], for 0 ≤ r < 4 and 0≤ c < 4,

and at the end of theF512 function, the SubState512 array is copied to the output array out as
follows:

out[r + 4c] = s[r, c], for 0 ≤ r < 4 and 0≤ c < 4.

4 Mathematical Preliminaries

Lesamnta uses certain operations in the finite field GF(28). Such a finite field has many different
representations. We fix a characteristic polynomial and represent an element of GF(28) by a
polynomial.

First, we define the finite field GF(28) as GF(28) = GF(2)[x]/(ϕ(x)), where the polynomialϕ(x)
is given as follows:

ϕ(x) = x8 + x4 + x3 + x + 1 = {01}{1b}.
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4.1 Addition

The sum of two polynomials over GF(28) is a polynomial whose coefficients are given by the sums
modulo 2 of the corresponding coefficients. In other words, addition is calculated by a bitwise
XOR. For example, the sum of{57} and{a3} is calculated as follows:

{57} + {a3} = (x6 + x4 + x2 + x + 1)+ (x7 + x5 + x + 1)

= x7 + x6 + x5 + x4 + x2

= {f4}.

4.2 Multiplication

Multiplication in GF(28) (denoted by•) can be divided into two steps. First, we define the
multiplication of any elementf (x) =

∑7
i=0 a7−ixi andx by usingϕ(x) as follows:

x · f (x) =
7∑

i=0

a7−ix
i+1 modϕ(x).

For example, the multiplication of{02} and{87} is calculated as follows:

{02} • {87} = x · (x7 + x2 + x + 1)

= x8 + x3 + x2 + x

= (x4 + x3 + x + 1)+ x3 + x2 + x

= x4 + x2 + 1

= {15}.

Second, we calculatexi · f (x) for anyi by iterative application of the above definition.
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5 Specification

This chapter describes the Lesamnta algorithms.

5.1 Round Constants

5.1.1 Lesamnta-224/256

Lesamnta-224 and Lesamnta-256 use the same sequence ofNr comp256(=Nr out256) constant
64-bit words,C(round). These words are defined by the following equation:

C(round) = 000000XY000000ZW,

whereXY is 2∗ round+1 in hex, andZW is 2∗ round in hex. The round constantsC(0),C(1), . . . ,C(31)

are the following (from left to right, in hex):

0000000100000000, 0000000300000002, 0000000500000004, 0000000700000006,

0000000900000008, 0000000b0000000a, 0000000d0000000c, 0000000f0000000e,

0000001100000010, 0000001300000012, 0000001500000014, 0000001700000016,

0000001900000018, 0000001b0000001a, 0000001d0000001c, 0000001f0000001e,

0000002100000020, 0000002300000022, 0000002500000024, 0000002700000026,

0000002900000028, 0000002b0000002a, 0000002d0000002c, 0000002f0000002e,

0000003100000030, 0000003300000032, 0000003500000034, 0000003700000036,

0000003900000038, 0000003b0000003a, 0000003d0000003c, 0000003f0000003e.

5.1.2 Lesamnta-384/512

Lesamnta-384 and Lesamnta-512 use the same sequence ofNr comp512(=Nr out512) constant
128-bit words,C(round). These words are defined by the following equation:

C(round) = 00000000000000XY00000000000000ZW,

whereXY is 2∗ round+1 in hex, andZW is 2∗ round in hex. The round constantsC(0),C(1), . . . ,C(31)

are the following (from left to right, in hex):
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00000000000000010000000000000000, 00000000000000030000000000000002,

00000000000000050000000000000004, 00000000000000070000000000000006,

00000000000000090000000000000008, 000000000000000b000000000000000a,

000000000000000d000000000000000c, 000000000000000f000000000000000e,

00000000000000110000000000000010, 00000000000000130000000000000012,

00000000000000150000000000000014, 00000000000000170000000000000016,

00000000000000190000000000000018, 000000000000001b000000000000001a,

000000000000001d000000000000001c, 000000000000001f000000000000001e,

00000000000000210000000000000020, 00000000000000230000000000000022,

00000000000000250000000000000024, 00000000000000270000000000000026,

00000000000000290000000000000028, 000000000000002b000000000000002a,

000000000000002d000000000000002c, 000000000000002f000000000000002e,

00000000000000310000000000000030, 00000000000000330000000000000032,

00000000000000350000000000000034, 00000000000000370000000000000036,

00000000000000390000000000000038, 000000000000003b000000000000003a,

000000000000003d000000000000003c, 000000000000003f000000000000003e.

5.2 Preprocessing

Preprocessing takes place before hash computation begins.This preprocessing consists of three
steps: padding the messageM (Sec. 5.2.1), parsing the padded message into message blocks
(Sec. 5.2.2), and setting the initial hash valueH(0) (Sec. 5.2.3).

5.2.1 Padding the Message

The messageM is padded before hash computation begins. The purpose of this padding is to ensure
that the message consists of a multiple of 256 or 512 bits, depending on the algorithm.

5.2.1.1 Lesamnta-224/256

Suppose that the length of messageM is l bits. Append the bit “1” to the end of the message,
followed byk + 191 zero bits, wherek is the minimum non-negative integer such thatl + 1+ k +
191≡ 192 (mod 256). Then, append a 64-bit block equal to the numberl as expressed in binary
representation. The length of the padded message should nowbe a multiple of 256 bits.

Tail of M 001 ..... l

191 64

Figure 6: Last two blocks of a padded message for Lesamnta-224/256 (l ≡ 0 (mod 256))

Tail of M 00 001 ..... l

191 64

...

k

Figure 7: Last two blocks of a padded message for Lesamnta-224/256 (l . 0 (mod 256))
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5.2.1.2 Lesamnta-384/512

Suppose that the length of messageM is l bits. Append the bit “1” to the end of the message,
followed byk + 383 zero bits, wherek is the minimum non-negative integer such thatl + 1+ k +
383≡ 384 (mod 512). Then, append a 128-bit block equal to the number l as expressed in binary
representation. The length of the padded message should nowbe a multiple of 512 bits.

Tail of M 001 ..... l

383 128

Figure 8: Last two blocks of a padded message for Lesamnta-384/512 (l ≡ 0 (mod 512))

Tail of M 00 001 ..... l

383 128

...

k

Figure 9: Last two blocks of a padded message for Lesamnta-384/512 (l . 0 (mod 512))

5.2.2 Parsing the Padded Message

After a message has been padded, it must be parsed intoN m-bit blocks before the hash computation
can begin.

5.2.2.1 Lesamnta-224/256

For Lesamnta-224 and Lesamnta-256, the padded message is parsed into N 256-bit blocks:
M(1),M(2), . . . ,M(N). Since the 256 bits of the input block can be expressed as eight 32-bit words,
the first 32 bits of message blockM(i) are denoted asM(i)

0 ; the next 32 bits, asM(i)
1 ; and so on up to

M(i)
7 .

5.2.2.2 Lesamnta-384/512

For Lesamnta-384 and Lesamnta-512, the padded message is parsed into N 512-bit blocks:
M(1),M(2), . . . ,M(N). Since the 512 bits of the input block can be expressed as eight 64-bit words,
the first 64 bits of message blockM(i) are denoted asM(i)

0 ; the next 64 bits, asM(i)
1 ; and so on up to

M(i)
7 .

5.2.3 Setting the Initial Hash Value

Before hash computation begins for each of the Lesamnta algorithms, the initial hash valueH(0)

must be set. The size of the words inH(0) depends on the message digest size.
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5.2.3.1 Lesamnta-224

For Lesamnta-224, the initial hash valueH(0) consists of the following eight 32-bit words, in hex:

H(0)
0 = 00000224,

H(0)
1 = 00000224,

H(0)
2 = 00000224,

H(0)
3 = 00000224,

H(0)
4 = 00000224,

H(0)
5 = 00000224,

H(0)
6 = 00000224,

H(0)
7 = 00000224.

5.2.3.2 Lesamnta-256

For Lesamnta-256, the initial hash valueH(0) consists of the following eight 32-bit words, in hex:

H(0)
0 = 00000256,

H(0)
1 = 00000256,

H(0)
2 = 00000256,

H(0)
3 = 00000256,

H(0)
4 = 00000256,

H(0)
5 = 00000256,

H(0)
6 = 00000256,

H(0)
7 = 00000256.

5.2.3.3 Lesamnta-384

For Lesamnta-384, the initial hash valueH(0) consists of the following eight 64-bit words, in hex:

H(0)
0 = 0000000000000384,

H(0)
1 = 0000000000000384,

H(0)
2 = 0000000000000384,

H(0)
3 = 0000000000000384,

H(0)
4 = 0000000000000384,

H(0)
5 = 0000000000000384,

H(0)
6 = 0000000000000384,

H(0)
7 = 0000000000000384.
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5.2.3.4 Lesamnta-512

For Lesamnta-512, the initial hash valueH(0) consists of the following eight 64-bit words, in hex:

H(0)
0 = 0000000000000512,

H(0)
1 = 0000000000000512,

H(0)
2 = 0000000000000512,

H(0)
3 = 0000000000000512,

H(0)
4 = 0000000000000512,

H(0)
5 = 0000000000000512,

H(0)
6 = 0000000000000512,

H(0)
7 = 0000000000000512.

5.3 Lesamnta-256 Algorithm

Lesamnta-256 can be used to hash a messageM having a length ofl bits, where 0≤ l < 264. The
final result of Lesamnta-256 is a 256-bit message digest.

5.3.1 Lesamnta-256 Preprocessing

1. Pad the messageM, according to Sec. 5.2.1.1.

2. Parse the padded message intoN 256-bit message blocksM(1),M(2), . . . ,M(N), according to
Sec. 5.2.2.1.

3. Set the initial hash valueH(0), as specified in Sec. 5.2.3.2.

5.3.2 Lesamnta-256 Computation

The Lesamnta-256 hash computation uses the round constantsdefined in Sec. 5.1.1.
After preprocessing is completed, each message blockM(1),M(2), . . . ,M(N) is processed in

order, as follows:

for i = 1 to N - 1

Compression256(H(i−1), M(i))

end for

Output256(H(N−1), M(N))

Figure 10: Pseudocode for the Lesamnta-256 computation

The resulting 256-bit message digest of the messageM is

H(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 ||H

(N)
6 ||H

(N)
7 .
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The Compression functionCompression256() is shown in the following pseudocode:

Compression256(word chain[8], word mb[8])
begin

word K[Nr comp256][2]
word x[8]
word substate256[2]

1. Prepare the key schedule of the block cipher EncComp256:

KeyExpComp256(chain,K )

2. Compute the encryption function of the block cipher EncComp256:

for j = 0 to 7

x[j] = mb[j]
end for

for round = 0 to Nr comp256 - 1

substate256[0] = x[4]
substate256[1] = x[5]

AddRoundKey256(substate256, K[round])

for iteration = 0 to 3

SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for

x[6] = x[6] ⊕ substate256[0]
x[7] = x[7] ⊕ substate256[1]

WordRotation256(x)
end for

3. Compute the intermediate hash value H(i):

for j = 0 to 7

chain[j] = x[j] ⊕ mb[j]
end for

end

Figure 11: Pseudocode forCompression256()

At the end ofCompression256(), H(i) is given bychain[0]||chain[1]||. . . ||chain[7].
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Figure 12 illustrates the round function of the block cipherEncComp256.

K(round)
1

K(round)
0

F256

32

Figure 12: Round function inEncComp256
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The Output functionOutput256() is shown in the following pseudocode:

Output256(word chain[8], word mb[8])
begin

word K[Nr out256][2]
word x[8]
word substate256[2]

1. Prepare the key schedule of the block cipher EncOut256:

KeyExpOut256(chain,K )

2. Compute the encryption function of the block cipher EncOut256:

for j = 0 to 7

x[j] = mb[j]
end for

for round = 0 to Nr out256 - 1

substate256[0] = x[4]
substate256[1] = x[5]

AddRoundKey256(substate256, K[round])

for iteration = 0 to 3

SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for

x[6] = x[6] ⊕ substate256[0]
x[7] = x[7] ⊕ substate256[1]

WordRotation256(x)
end for

3. Compute the final hash value H(N):

for j = 0 to 7

chain[j] = x[j] ⊕ mb[j]
end for

end

Figure 13: Pseudocode forOutput256()

At the end ofOutput256(), H(N) is given bychain[0]||chain[1]||. . . ||chain[7].
Note thatCompression256() andOutput256() work in a similar manner. The differences

between two functions are shown in bold.
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5.3.2.1 SubBytes256() Transformation

TheSubBytes256() transformation is a non-linear byte substitution that operates independently
on each byte of the SubState256 by using the substitution table S-box, defined in Fig. 15. The
SubBytes256() transformation proceeds as follows:

s′r,c = S-box(sr,c), for 0 ≤ r < 2 and 0≤ c < 4.

Figure 14 illustrates theSubBytes256() transformation.

SubBytes256()

s0,0

s1,0

sr,c

s1,1

s0,2

s1,2

s0,3

s1,3

s′0,0

s′1,0

s′r,c

s′1,1

s′0,2

s′1,2

s′0,3

s′1,3

Figure 14:SubBytes256() applies the S-box to each byte of the SubState256

The S-box used in theSubBytes256() transformation is shown in hexadecimal form in
Fig. 15. For example, ifs1,0 = {53}, then the substitution value is determined by the intersection of
the row with index ‘5’ and the column with index ‘3’ in Fig. 15.This results ins′1,0 having a value
of {ed}.

y

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

x 7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 15: S-box: substitution values for the byte{xy} (in hexadecimal format)

5.3.2.2 ShiftRows256() Transformation

In the ShiftRows256() transformation, the bytes in the second row of the SubState256 are
cyclically shifted over different numbers of bytes (offsets). The first row is not shifted. Specifically,
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theShiftRows256() transformation proceeds as follows:

S ′1,c = S 1,(c+1) mod 4, for 0 ≤ c < 4.

Figure 16 illustrates theShiftRows256() transformation.

ShiftRows256()

s s′

s1,0 s1,1 s1,2 s1,3 s′1,0 s′1,1 s′1,2 s′1,3

s0,0s0,0

s1,0s1,0

s0,1s0,1

s1,1s1,1

s0,2s0,2

s1,2s1,2

s0,3s0,3

s1,3s1,3

Figure 16:ShiftRows256() cyclically shifts the second row in the SubState256

5.3.2.3 MixColumns256() Transformation

The MixColumns256() transformation uses multiplication over a finite field, as defined in
Sec. 4.2, in the following manner:

[
s′0,c
s′1,c

]
=

[
02 01

01 02

] [
s0,c

s1,c

]
, for 0 ≤ c < 4.

As a result of this multiplication, the two bytes in a column are replaced by the following:

s′0,c = ({02} • s0,c) ⊕ s1,c,

s′1,c = s0,c ⊕ ({02} • s1,c).

Figure 17 illustrates theMixColumns256() transformation.

MixColumns256()

s0,0

s1,0

s0,c

s1,c

s0,2

s1,2

s0,3

s1,3

s′0,0

s′1,0

s′0,c

s′1,c

s′0,2

s′1,2

s′0,3

s′1,3

Figure 17:MixColumns256() operates on the SubState256 column by column

5.3.2.4 AddRoundKey256() Transformation

In theAddRoundKey256() transformation, the two-word Round KeyK(round) = K(round)
0 ||K(round)

1

from the key schedule, as described in Secs. 5.3.2.6 and 5.3.2.7, is added to the SubState256 by a
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simple bitwise XOR operation. The two words are each added into the SubState256, such that
[
s′0,0, s

′
1,0, s

′
0,1, s

′
1,1

]
=

[
s0,0, s1,0, s0,1, s1,1

] ⊕ K(round)
0 ,

[
s′0,2, s

′
1,2, s

′
0,3, s

′
1,3

]
=

[
s0,2, s1,2, s0,3, s1,3

] ⊕ K(round)
1 .

5.3.2.5 WordRotation256()

WordRotation256() takes eight 32-bit wordsx0, x1, . . . , x7 as input and performs a cyclic
permutation. The function proceeds as follows:

x′j+2 mod 8= x j, for 0 ≤ j < 8.

5.3.2.6 KeyExpComp256()

During the process ofCompression256(H(i−1),M(i)), the EncComp256 block cipher takes the
intermediate hash valueH(i−1) as the Block Cipher Key and performs the Key Expansion routine
KeyExpComp256() to generate a key schedule.

KeyExpComp256() generates a total of 2∗ Nr comp256 words: the algorithm requires an
initial set of eight words, and each of theNr comp256 rounds requires eight words of key data.
The resulting key schedule consists of a linear array of words, with i in the range of 0≤ i <
2 ∗ Nr comp256. The round constant word arrayC(round) = C(round)

0 ||C(round)
1 is defined in Sec. 5.1.1.

Expansion of the input key into the key schedule proceeds according to the pseudocode shown in
Fig. 18.

SubWords256() is a function that takes 8-byte input words and applies the S-box (Fig. 15) to
each of the 8 bytes to produce output words.WordRotation256() is defined in Sec. 5.3.2.5.

Each of the functionsKeyLinear256()andByteTranspos256() takes 8 bytesa0, a1, . . . , a7

as input and performs a bytewise permutation.KeyLinear256() is a bytewise operation given by
the following equation, where multiplication over GF(28) is defined in Sec. 4.2:



a′i
a′i+1
a′i+2
a′i+3


=



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





ai

ai+1

ai+2

ai+3


, i = 0, 4.

a′i = ({02} • ai) ⊕ ({03} • ai+1) ⊕ ai+2 ⊕ ai+3,

a′i+1 = ai ⊕ ({02} • ai+1) ⊕ ({03} • ai+2) ⊕ ai+3,

a′i+2 = ai ⊕ ai+1 ⊕ ({02} • ai+2) ⊕ ({03} • ai+3),

a′i+3 = ({03} • ai) ⊕ ai+1 ⊕ ai+2 ⊕ ({02} • ai+3).
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KeyExpComp256(word chain[8], word K[Nr_comp256][2])
begin

word t[2] /* The structure is not a SubState256 */

for round = 0 to Nr_comp256 - 1

t[0] = chain[4] ⊕ C[round][0]
t[1] = chain[5] ⊕ C[round][1]

SubWords256(t)
KeyLinear256(t)
ByteTranspos256(t)

chain[6] = chain[6] ⊕ t[0]
chain[7] = chain[7] ⊕ t[1]

WordRotation256(chain)
K[round][0] = chain[2]
K[round][1] = chain[3]

end for
end

Figure 18: Pseudocode forKeyExpComp256()

ByteTranspos256() performs bytewise transposition in the following manner:

a′0 = a4, a′1 = a5, a′2 = a2, a′3 = a3,

a′4 = a0, a′5 = a1, a′6 = a6, a′7 = a7.

Figure 19 illustrates theByteTranspos256() transformation.

a0 a1 a2 a3 a4 a5 a6 a7

a′0 a′1 a′2 a′3 a′4 a′5 a′6 a′7

Figure 19:ByteTranspos256() transformation

5.3.2.7 KeyExpOut256()

During the process ofOutput256(H(N−1),M(N)), theEncOut256 block cipher takes the intermediate
hash value H(N−1) as the Block Cipher Key and performs the Key Expansion routine
KeyExpOut256() to generate a key schedule.

KeyExpOut256()generates a total of 2∗Nr out256 words: the algorithm requires an initial set
of eight words, and each of theNr out256 rounds requires eight words of key data. The resulting
key schedule consists of a linear array of words, withi in the range of 0≤ i < 2 ∗ Nr out256. The
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round constant word arrayC(round) = C(round)
0 ||C(round)

1 is defined in Sec. 5.1.1. Expansion of the input
key into the key schedule proceeds according to the pseudocode shown in Fig. 20.

The functions SubBytes256(), ShiftRows256(), MixColumns256(), and
WordRotation256() are defined in Secs. 5.3.2.1, 5.3.2.2, 5.3.2.3, and 5.3.2.5,respectively.

KeyExpOut256(word chain[8], word K[Nr_out256][2])
begin

word substate256[2]

for round = 0 to Nr_out256 - 1

substate256[0] = chain[4] ⊕ C[round][0]
substate256[1] = chain[5] ⊕ C[round][1]

for iteration = 0 to 3

SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for

chain[6] = chain[6] ⊕ substate256[0]
chain[7] = chain[7] ⊕ substate256[1]

WordRotation256(chain)
K[round][0] = chain[2]
K[round][1] = chain[3]

end for
end

Figure 20: Pseudocode forKeyExpOut256()

5.4 Lesamnta-224 Algorithm

Lesamnta-224 can be used to hash a messageM having a length ofl bits, where 0≤ l < 264. The
algorithm is defined in exactly the same manner as for Lesamnta-256 (Sec. 5.3), with the following
two exceptions:

1. The initial hash valueH(0) is set as specified in Sec. 5.2.3.1.

2. The 224-bit message digest is obtained by truncating the final hash valueH(N) to its leftmost
224 bits:

H(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 ||H

(N)
6 .
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5.5 Lesamnta-512 Algorithm

Lesamnta-512 can be used to hash a messageM having a length ofl bits, where 0≤ l < 2128. The
final result of Lesamnta-512 is a 512-bit message digest.

5.5.1 Lesamnta-512 Preprocessing

1. Pad the messageM, according to Sec. 5.2.1.2.

2. Parse the padded message intoN 512-bit message blocksM(1),M(2), . . . ,M(N), according to
Sec. 5.2.2.2.

3. Set the initial hash valueH(0), as specified in Sec. 5.2.3.4.

5.5.2 Lesamnta-512 Computation

The Lesamnta-512 hash computation uses the round constantsdefined in Sec. 5.1.2.
After preprocessing is completed, each message blockM(1),M(2), . . . ,M(N) is processed in

order, as follows:

for i = 1 to N - 1

Compression512(H(i−1), M(i))

end for

Output512(H(N−1), M(N))

Figure 21: Pseudocode for the Lesamnta-512 computation

The resulting 512-bit message digest of the messageM is

H(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 ||H

(N)
6 ||H

(N)
7 .
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The Compression functionCompression512() is shown in the following pseudocode:

Compression512(word chain[8], word mb[8])
begin

word K[Nr comp512][2]
word x[8]
word substate512[2]

1. Prepare the key schedule of the block cipher EncComp512:

KeyExpComp512(chain,K )

2. Compute the encryption function of the block cipher EncComp512:

for j = 0 to 7

x[j] = mb[j]
end for

for round = 0 to Nr comp512 - 1

substate512[0] = x[4]
substate512[1] = x[5]

AddRoundKey512(substate512, K[round])

for iteration = 0 to 3

SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substate512)

end for

x[6] = x[6] ⊕ substate512[0]
x[7] = x[7] ⊕ substate512[1]

WordRotation512(x)
end for

3. Compute the intermediate hash value H(i):

for j = 0 to 7

chain[j] = x[j] ⊕ mb[j]
end for

end

Figure 22: Pseudocode forCompression512()

At the end ofCompression512(), H(i) is given bychain[0]||chain[1]||. . . ||chain[7].
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Figure 23 illustrates the round function of the block cipherEncComp512.

K(round)
1

K(round)
0

F512

64

Figure 23: Round function inEncComp512
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The Output functionOutput512() is shown in the following pseudocode:

Output512(word chain[8], word mb[8])
begin

word K[Nr out512][2]
word x[8]
word substate512[2]

1. Prepare the key schedule of the block cipher EncOut512:

KeyExpOut512(chain,K )

2. Compute the encryption function of the block cipher EncOut512:

for j = 0 to 7

x[j] = mb[j]
end for

for round = 0 to Nr out512 - 1

substate512[0] = x[4]
substate512[1] = x[5]

AddRoundKey512(substate512, K[round])

for iteration = 0 to 3

SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substate512)

end for

x[6] = x[6] ⊕ substate512[0]
x[7] = x[7] ⊕ substate512[1]

WordRotation512(x)
end for

3. Compute the final hash value H(N):

for j = 0 to 7

chain[j] = x[j] ⊕ mb[j]
end for

end

Figure 24: Pseudocode forOutput512()

At the end ofOutput512(), H(N) is given bychain[0]||chain[1]||. . . ||chain[7].
Note thatCompression512() andOutput512() work in a similar manner. The differences

between the two functions are shown in bold.
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5.5.2.1 SubBytes512() Transformation

TheSubBytes512() transformation is a non-linear byte substitution that operates independently
on each byte of the SubState512 by using the substitution table S-box, defined in Fig. 15. The
SubBytes512() transformation proceeds as follows:

s′r,c = S-box(sr,c), for 0 ≤ r < 4 and 0≤ c < 4.

Figure 25 illustrates theSubBytes512() transformation.

SubBytes512()

s0,0

s1,0

s2,0

s3,0

sr,c

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

s′0,0

s′1,0

s′2,0

s′3,0

s′r,c

s′1,1

s′2,1

s′3,1

s′0,2

s′1,2

s′2,2

s′3,2

s′0,3

s′1,3

s′2,3

s′3,3

Figure 25:SubBytes512() applies the S-box to each byte of the SubState512

5.5.2.2 ShiftRows512() Transformation

In theShiftRows512() transformation, the bytes in the last three rows of the SubState512 are
cyclically shifted over different numbers of bytes (offsets). The first row is not shifted. Specifically,
theShiftRows512() transformation proceeds as follows:

S ′r,c = S r,(c+r) mod 4, for 0 < r < 4 and 0≤ c < 4,

Figure 26 illustrates theShiftRows512() transformation.

ShiftRows512()

s s′

sr,0 sr,1 sr,2 sr,3 s′r,0 s′r,1 s′r,2 s′r,3

s0,0s0,0

s1,0s1,0

s2,0s2,0

s3,0s3,0

s0,1s0,1

s1,1s1,1

s2,1s2,1

s3,1s3,1

s0,2s0,2

s1,2s1,2

s2,2s2,2

s3,2s3,2

s0,3s0,3

s1,3s1,3

s2,3s2,3

s3,3s3,3

Figure 26:ShiftRows512() cyclically shifts the last three rows in the SubState512
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5.5.2.3 MixColumns512() Transformation

The MixColumns512() transformation uses multiplication over a finite field, as defined in
Sec. 4.2, in the following manner:



s′0,c
s′1,c
s′2,c
s′3,c


=



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





s0,c

s1,c

s2,c

s3,c


, for 0 ≤ c < 4.

As a result of this multiplication, the two bytes in a column are replaced by the following:

s′0,c = ({02} • s0,c) ⊕ ({03} • s1,c) ⊕ s2,c ⊕ s3,c,

s′1,c = s0,c ⊕ ({02} • s1,c) ⊕ ({03} • s2,c) ⊕ s3,c,

s′2,c = s0,c ⊕ s1,c ⊕ ({02} • s2,c) ⊕ ({03} • s3,c),

s′3,c = ({03} • s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} • s3,c).

Figure 27 illustrates theMixColumns512() transformation.

MixColumns512()

s0,0

s1,0

s2,0

s3,0

s0,c

s1,c

s2,c

s3,c

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

s′0,0

s′1,0

s′2,0

s′3,0

s′0,c

s′1,c

s′2,c

s′3,c

s′0,2

s′1,2

s′2,2

s′3,2

s′0,3

s′1,3

s′2,3

s′3,3

Figure 27:MixColumns512() operates on the SubState512 column by column

5.5.2.4 AddRoundKey512() Transformation

In theAddRoundKey512() transformation, the two-word Round KeyK(round) = K(round)
0 ||K(round)

1

from the key schedule, as described in Secs. 5.5.2.6 and 5.5.2.7, is added to the SubState512 by a
simple bitwise XOR operation. The two words are each added into the SubState512, such that

[
s′0,0, s

′
1,0, s

′
2,0, s

′
3,0, s

′
0,1, s

′
1,1, s

′
2,1, s

′
3,1

]
=

[
s0,0, s1,0, s2,0, s3,0, s0,1, s1,1, s2,1, s3,1

] ⊕ K(round)
0 ,

[
s′0,2, s

′
1,2, s

′
2,2, s

′
3,2, s

′
0,3, s

′
1,3, s

′
2,3, s

′
3,3

]
=

[
s0,2, s1,2, s2,2, s3,2, s0,3, s1,3, s2,3, s3,3

] ⊕ K(round)
1 .

5.5.2.5 WordRotation512()

WordRotation512() takes eight 64-bit wordsx0, x1, . . . , x7 as input and performs a cyclic
permutation. The function proceeds as follows:

x′j+2 mod 8= x j, for 0 ≤ j < 8.
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5.5.2.6 KeyExpComp512()

During the process ofCompression512(H(i−1),M(i)), the EncComp512 block cipher takes the
intermediate hash valueH(i−1) as the Block Cipher Key and performs the Key Expansion routine
KeyExpComp512() to generate a key schedule.

KeyExpComp512() generates a total of 2∗ Nr comp512 words: the algorithm requires an
initial set of eight words, and each of theNr comp512 rounds requires eight words of key data.
The resulting key schedule consists of a linear array of words, with i in the range of 0≤ i <
2 ∗ Nr comp512. The round constant word arrayC(round) = C(round)

0 ||C(round)
1 is defined in Sec. 5.1.2.

Expansion of the input key into the key schedule proceeds according to the pseudocode shown in
Fig. 28.

SubWords512() is a function that takes 16-byte input words and applies the S-box (Fig. 15)
to each of the 16 bytes to produce output words.WordRotation512() is defined in Sec. 5.5.2.5.

KeyExpComp512(word chain[8], word K[Nr_comp512][2])
begin

word t[2] /* The structure is not a SubState512 */

for round = 0 to Nr_comp512 - 1

t[0] = chain[4] ⊕ C[round][0]
t[1] = chain[5] ⊕ C[round][1]

SubWords512(t)
KeyLinear512(t)
ByteTranspos512(t)

chain[6] = chain[6] ⊕ t[0]
chain[7] = chain[7] ⊕ t[1]

WordRotation512(chain)
K[round][0] = chain[2]
K[round][1] = chain[3]

end for
end

Figure 28: Pseudocode forKeyExpComp512()

Each of the The functionsKeyLinear512() and ByteTranspos512() takes 16 bytes
a0, a1, . . . , a15 as input and performs a bytewise permutation.KeyLinear512() is a bytewise
operation given by the following equation, where multiplication over GF(28) is defined in Sec. 4.2:
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a′i
a′i+1
a′i+2
a′i+3
a′i+4
a′i+5
a′i+6
a′i+7



=



01 01 02 0a 09 08 01 04

04 01 01 02 0a 09 08 01

01 04 01 01 02 0a 09 08

08 01 04 01 01 02 0a 09

09 08 01 04 01 01 02 0a

0a 09 08 01 04 01 01 02

02 0a 09 08 01 04 01 01

01 02 0a 09 08 01 04 01





ai

ai+1

ai+2

ai+3

ai+4

ai+5

ai+6

ai+7



, i = 0, 8.

a′i = ai ⊕ ai+1 ⊕ ({02} • ai+2) ⊕ ({0a} • ai+3) ⊕ ({09} • ai+4) ⊕ ({08} • ai+5) ⊕ ai+6 ⊕ ({04} • ai+7),

a′i+1 = ({04} • ai) ⊕ ai+1 ⊕ ai+2 ⊕ ({02} • ai+3) ⊕ ({0a} • ai+4) ⊕ ({09} • ai+5) ⊕ ({08} • ai+6) ⊕ ai+7,

a′i+2 = ai ⊕ ({04} • ai+1) ⊕ ai+2 ⊕ ai+3 ⊕ ({02} • ai+4) ⊕ ({0a} • ai+5) ⊕ ({09} • ai+6) ⊕ ({08} • ai+7),

a′i+3 = ({08} • ai) ⊕ ai+1 ⊕ ({04} • ai+2) ⊕ ai+3 ⊕ ai+4 ⊕ ({02} • ai+5) ⊕ ({0a} • ai+6) ⊕ ({09} • ai+7),

a′i+4 = ({09} • ai) ⊕ ({08} • ai+1) ⊕ ai+2 ⊕ ({04} • ai+3) ⊕ ai+4 ⊕ ai+5 ⊕ ({02} • ai+6) ⊕ ({0a} • ai+7),

a′i+5 = ({0a} • ai) ⊕ ({09} • ai+1) ⊕ ({08} • ai+2) ⊕ ai+3 ⊕ ({04} • ai+4) ⊕ ai+5 ⊕ ai+6 ⊕ ({02} • ai+7),

a′i+6 = ({02} • ai) ⊕ ({0a} • ai+1) ⊕ ({09} • ai+2) ⊕ ({08} • ai+3) ⊕ ai+4 ⊕ ({04} • ai+5) ⊕ ai+6 ⊕ ai+7,

a′i+7 = ai ⊕ ({02} • ai+1) ⊕ ({0a} • ai+2) ⊕ ({09} • ai+3) ⊕ ({08} • ai+4) ⊕ ai+5 ⊕ ({04} • ai+6) ⊕ ai+7.

ByteTranspos512() performs bytewise transposition in the following manner:

a′0 = a8, a′1 = a9, a′2 = a10, a′3 = a11, a′4 = a4, a′5 = a5, a′6 = a6, a′7 = a7,
a′8 = a0, a′9 = a1, a′10 = a2, a′11 = a3, a′12 = a12, a′13 = a13, a′14 = a14, a′15 = a15.

Figure 29 illustrates theByteTranspos512() transformation.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a′0 a′1 a′2 a′3 a′4 a′5 a′6 a′7 a′8 a′9 a′10 a′11 a′12 a′13 a′14 a′15

Figure 29:ByteTranspos512() transformation

5.5.2.7 KeyExpOut512()

During the process ofOutput512(H(N−1),M(N)), theEncOut512 block cipher takes the intermediate
hash value H(N−1) as the Block Cipher Key and performs the Key Expansion routine
KeyExpOut512() to generate a key schedule.

KeyExpOut512()generates a total of 2∗Nr out512 words: the algorithm requires an initial set
of eight words, and each of theNr out512 rounds requires eight words of key data. The resulting
key schedule consists of a linear array of words, withi in the range of 0≤ i < 2 ∗ Nr out512. The
round constant word arrayC(round) = C(round)

0 ||C(round)
1 is defined in Sec. 5.1.2.
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Expansion of the input key into the key schedule proceeds according to the pseudocode shown
in Fig. 30.

The functions SubBytes512(), ShiftRows512(), MixColumns512(), and
WordRotation512() are defined in Secs. 5.5.2.1, 5.5.2.2, 5.5.2.3, and 5.5.2.5,respectively.

KeyExpOut512(word chain[8], word K[Nr_out512][2])
begin

word substate512[2]

for round = 0 to Nr_out512 - 1

substate512[0] = chain[4] ⊕ C[round][0]
substate512[1] = chain[5] ⊕ C[round][1]

for iteration = 0 to 3

SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substate512)

end for

chain[6] = chain[6] ⊕ substate512[0]
chain[7] = chain[7] ⊕ substate512[1]

WordRotation512(chain)
K[round][0] = chain[2]
K[round][1] = chain[3]

end for
end

Figure 30: Pseudocode forKeyExpOut512()

5.6 Lesamnta-384 Algorithm

Lesamnta-384 can be used to hash a messageM having a length ofl bits, where 0≤ l < 2128. The
algorithm is defined in exactly the same manner as for Lesamnta-512 (Sec. 5.5), with the following
two exceptions:

1. The initial hash valueH(0) is set as specified in Sec. 5.2.3.3.

2. The 384-bit message digest is obtained by truncating the final hash valueH(N) to its leftmost
384 bits:

H(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 .
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5.7 Lesamnta Examples

5.7.1 Lesamnta-256 Example

Let the messageM, be the 24-bit (l = 24) ASCII string “abc”, which is equivalent to the following
binary string:

01100001 01100010 01100011.

The message is padded by appending a “1” bit, followed by 423 “0” bits, and ending with the
hex value00000000 00000018 (the two 32-bit word representation of length 24). Thus, thefinal
padded message consists of two blocks (N = 2).

For Lesamnta-256, the initial hash valueH(0) is

H(0)
0 = 00000256,

H(0)
1 = 00000256,

H(0)
2 = 00000256,

H(0)
3 = 00000256,

H(0)
4 = 00000256,

H(0)
5 = 00000256,

H(0)
6 = 00000256,

H(0)
7 = 00000256.

The words of the padded message blockM(1) are then assigned to the wordsx0, ..., x7 of the
block cipherEncComp256:

x0 = 61626380,

x1 = 00000000,

x2 = 00000000,

x3 = 00000000,

x4 = 00000000,

x5 = 00000000,

x6 = 00000000,

x7 = 00000000.

The following schedule shows the hex values forx0, ..., x7, after roundr of the “for r = 0 to
31” loop described in Sec. 5.3.2, Figure 11, step 2.
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x0 x1 x2 x3 x4 x5 x6 x7

r = 0 : 924bde4c 924bde4c 61626380 00000000 00000000 00000000 00000000 00000000

r = 1 : 271b6be7 2b583bdb 924bde4c 924bde4c 61626380 00000000 00000000 00000000

r = 2 : 9a5f8551 08e5acca 271b6be7 2b583bdb 924bde4c 924bde4c 61626380 00000000

r = 3 : 318ce5af b7a8215b 9a5f8551 08e5acca 271b6be7 2b583bdb 924bde4c 924bde4c

r = 4 : 15e5553b e26a5218 318ce5af b7a8215b 9a5f8551 08e5acca 271b6be7 2b583bdb

r = 5 : a7932650 8835a31c 15e5553b e26a5218 318ce5af b7a8215b 9a5f8551 08e5acca

r = 6 : 64926b7a 1af443fc a7932650 8835a31c 15e5553b e26a5218 318ce5af b7a8215b

r = 7 : f58103a1 c4a7b9f7 64926b7a 1af443fc a7932650 8835a31c 15e5553b e26a5218

r = 8 : d6e2e3c3 5efe05de f58103a1 c4a7b9f7 64926b7a 1af443fc a7932650 8835a31c

r = 9 : e93f5fcc c44e4e6e d6e2e3c3 5efe05de f58103a1 c4a7b9f7 64926b7a 1af443fc

r = 10 : 62e5737e a701ecd7 e93f5fcc c44e4e6e d6e2e3c3 5efe05de f58103a1 c4a7b9f7

r = 11 : 7efb3e71 14433399 62e5737e a701ecd7 e93f5fcc c44e4e6e d6e2e3c3 5efe05de

r = 12 : 584202c0 871a2fd7 7efb3e71 14433399 62e5737e a701ecd7 e93f5fcc c44e4e6e

r = 13 : 09e5d4b9 7f476927 584202c0 871a2fd7 7efb3e71 14433399 62e5737e a701ecd7

r = 14 : 3f75d6b1 82df6e25 09e5d4b9 7f476927 584202c0 871a2fd7 7efb3e71 14433399

r = 15 : 167f4af9 36ec1fdc 3f75d6b1 82df6e25 09e5d4b9 7f476927 584202c0 871a2fd7

r = 16 : 0b6d0af1 d8a4ed39 167f4af9 36ec1fdc 3f75d6b1 82df6e25 09e5d4b9 7f476927

r = 17 : bbc87f9b 33e64080 0b6d0af1 d8a4ed39 167f4af9 36ec1fdc 3f75d6b1 82df6e25

r = 18 : 344a8de9 1122a932 bbc87f9b 33e64080 0b6d0af1 d8a4ed39 167f4af9 36ec1fdc

r = 19 : 4cfba3a0 519dbe2b 344a8de9 1122a932 bbc87f9b 33e64080 0b6d0af1 d8a4ed39

r = 20 : 40b51e54 df911e26 4cfba3a0 519dbe2b 344a8de9 1122a932 bbc87f9b 33e64080

r = 21 : e45b2b33 dfb34ce6 40b51e54 df911e26 4cfba3a0 519dbe2b 344a8de9 1122a932

r = 22 : 859cd55a 080884eb e45b2b33 dfb34ce6 40b51e54 df911e26 4cfba3a0 519dbe2b

r = 23 : cafc90b6 ef086cdc 859cd55a 080884eb e45b2b33 dfb34ce6 40b51e54 df911e26

r = 24 : 4c31690a 3c726b86 cafc90b6 ef086cdc 859cd55a 080884eb e45b2b33 dfb34ce6

r = 25 : 340b67eb 7cb138bd 4c31690a 3c726b86 cafc90b6 ef086cdc 859cd55a 080884eb

r = 26 : a3dac1c1 f7fa6162 340b67eb 7cb138bd 4c31690a 3c726b86 cafc90b6 ef086cdc

r = 27 : a8cfafa7 3d5d14b1 a3dac1c1 f7fa6162 340b67eb 7cb138bd 4c31690a 3c726b86

r = 28 : d3de8d3d 133083c0 a8cfafa7 3d5d14b1 a3dac1c1 f7fa6162 340b67eb 7cb138bd

r = 29 : a8321805 e1b21118 d3de8d3d 133083c0 a8cfafa7 3d5d14b1 a3dac1c1 f7fa6162

r = 30 : 0b9e1b3f 68db00ac a8321805 e1b21118 d3de8d3d 133083c0 a8cfafa7 3d5d14b1

r = 31 : a5fced96 897331ee 0b9e1b3f 68db00ac a8321805 e1b21118 d3de8d3d 133083c0

That completes the processing of thefirst message blockM(1). The intermediate hash value
H(1) is calculated to be

H(1)
0 = a5fced96 ⊕ 61626380 = c49e8e16,

H(1)
1 = 897331ee ⊕ 00000000 = 897331ee,

H(1)
2 = 0b9e1b3f ⊕ 00000000 = 0b9e1b3f,

H(1)
3 = 68db00ac ⊕ 00000000 = 68db00ac,

H(1)
4 = a8321805 ⊕ 00000000 = a8321805,

H(1)
5 = e1b21118 ⊕ 00000000 = e1b21118,

H(1)
6 = d3de8d3d ⊕ 00000000 = d3de8d3d,

H(1)
7 = 133083c0 ⊕ 00000000 = 133083c0.
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The words of thesecondpadded message blockM(2) are then assigned to the wordsx0, ..., x7 of
the block cipherEncOut256:

x0 = 00000000,

x1 = 00000000,

x2 = 00000000,

x3 = 00000000,

x4 = 00000000,

x5 = 00000000,

x6 = 00000000,

x7 = 00000018.

The following schedule shows the hex values forx0, ..., x7, after roundr of the “for r = 0 to
31” loop described in Sec. 5.3.2, Figure 13, step 2.

x0 x1 x2 x3 x4 x5 x6 x7

r = 0 : 7db22819 7b84aff3 00000000 00000000 00000000 00000000 00000000 00000000

r = 1 : 2cb35079 2f2327fe 7db22819 7b84aff3 00000000 00000000 00000000 00000000

r = 2 : 0886491b bdf6a9bd 2cb35079 2f2327fe 7db22819 7b84aff3 00000000 00000000

r = 3 : 21bfbf59 b854bc30 0886491b bdf6a9bd 2cb35079 2f2327fe 7db22819 7b84aff3

r = 4 : f1c77947 40b67b9e 21bfbf59 b854bc30 0886491b bdf6a9bd 2cb35079 2f2327fe

r = 5 : 23a05bc2 4c0b325e f1c77947 40b67b9e 21bfbf59 b854bc30 0886491b bdf6a9bd

r = 6 : 8a7c7c87 c8461974 23a05bc2 4c0b325e f1c77947 40b67b9e 21bfbf59 b854bc30

r = 7 : 2e8e1d78 b05f0c02 8a7c7c87 c8461974 23a05bc2 4c0b325e f1c77947 40b67b9e

r = 8 : b391c5ee aa7d210b 2e8e1d78 b05f0c02 8a7c7c87 c8461974 23a05bc2 4c0b325e

r = 9 : 08b40481 ff1e4869 b391c5ee aa7d210b 2e8e1d78 b05f0c02 8a7c7c87 c8461974

r = 10 : a420e8ec 80c14ce5 08b40481 ff1e4869 b391c5ee aa7d210b 2e8e1d78 b05f0c02

r = 11 : 406ac0a0 8a0e1380 a420e8ec 80c14ce5 08b40481 ff1e4869 b391c5ee aa7d210b

r = 12 : 5f625ef3 6a58a031 406ac0a0 8a0e1380 a420e8ec 80c14ce5 08b40481 ff1e4869

r = 13 : 634a9d62 9ef7610d 5f625ef3 6a58a031 406ac0a0 8a0e1380 a420e8ec 80c14ce5

r = 14 : 415dd8a0 35c1dac8 634a9d62 9ef7610d 5f625ef3 6a58a031 406ac0a0 8a0e1380

r = 15 : 27e6d188 7c2c5b8f 415dd8a0 35c1dac8 634a9d62 9ef7610d 5f625ef3 6a58a031

r = 16 : 86badf0b b654454a 27e6d188 7c2c5b8f 415dd8a0 35c1dac8 634a9d62 9ef7610d

r = 17 : bfa35647 a9015eb9 86badf0b b654454a 27e6d188 7c2c5b8f 415dd8a0 35c1dac8

r = 18 : 9c7c8895 1aef2bc9 bfa35647 a9015eb9 86badf0b b654454a 27e6d188 7c2c5b8f

r = 19 : 42c06cc6 8907bb96 9c7c8895 1aef2bc9 bfa35647 a9015eb9 86badf0b b654454a

r = 20 : 45f14bf9 18051660 42c06cc6 8907bb96 9c7c8895 1aef2bc9 bfa35647 a9015eb9

r = 21 : 1ce7ffb4 a9a9e70d 45f14bf9 18051660 42c06cc6 8907bb96 9c7c8895 1aef2bc9

r = 22 : 8414fcd9 51b7246c 1ce7ffb4 a9a9e70d 45f14bf9 18051660 42c06cc6 8907bb96

r = 23 : 75f94fc0 d2589717 8414fcd9 51b7246c 1ce7ffb4 a9a9e70d 45f14bf9 18051660

r = 24 : c8e89f1b 8bf7ebf6 75f94fc0 d2589717 8414fcd9 51b7246c 1ce7ffb4 a9a9e70d

r = 25 : a1d7681e 3cbe9910 c8e89f1b 8bf7ebf6 75f94fc0 d2589717 8414fcd9 51b7246c

r = 26 : 5fd41059 a4d991ee a1d7681e 3cbe9910 c8e89f1b 8bf7ebf6 75f94fc0 d2589717

r = 27 : 8373c6c6 8ba99026 5fd41059 a4d991ee a1d7681e 3cbe9910 c8e89f1b 8bf7ebf6

r = 28 : d366ec57 4407852b 8373c6c6 8ba99026 5fd41059 a4d991ee a1d7681e 3cbe9910

r = 29 : ae6cf0c9 47d9aeff d366ec57 4407852b 8373c6c6 8ba99026 5fd41059 a4d991ee

r = 30 : ca26c0c9 ac23a7af ae6cf0c9 47d9aeff d366ec57 4407852b 8373c6c6 8ba99026

r = 31 : 36936338 78299c69 ca26c0c9 ac23a7af ae6cf0c9 47d9aeff d366ec57 4407852b
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That completes the processing of the second and final messageblock M(2). The final hash value
H(2) is calculated to be

H(2)
0 = 36936338 ⊕ 00000000 = 36936338,

H(2)
1 = 78299c69 ⊕ 00000000 = 78299c69,

H(2)
2 = ca26c0c9 ⊕ 00000000 = ca26c0c9,

H(2)
3 = ac23a7af ⊕ 00000000 = ac23a7af,

H(2)
4 = ae6cf0c9 ⊕ 00000000 = ae6cf0c9,

H(2)
5 = 47d9aeff ⊕ 00000000 = 47d9aeff,

H(2)
6 = d366ec57 ⊕ 00000000 = d366ec57,

H(2)
7 = 4407852b ⊕ 00000018 = 44078533.

The resulting 256-bit message digest is

36936338 78299c69 ca26c0c9 ac23a7af ae6cf0c9 47d9aeff d366ec57 44078533.

5.7.2 Lesamnta-512 Example

Let the messageM be the 24-bit (l = 24) ASCII string “abc”, which is equivalent to the following
binary string:

01100001 01100010 01100011.

The message is padded by appending a “1” bit, followed by 871 “0” bits, and ending with the
hex value0000000000000000 0000000000000018 (the two 64-bit word representation of length
24). Thus, the final padded message consists of two blocks (N = 2).

For Lesamnta-512, the initial hash valueH(0) is

H(0)
0 = 0000000000000512,

H(0)
1 = 0000000000000512,

H(0)
2 = 0000000000000512,

H(0)
3 = 0000000000000512,

H(0)
4 = 0000000000000512,

H(0)
5 = 0000000000000512,

H(0)
6 = 0000000000000512,

H(0)
7 = 0000000000000512.

The words of the padded message blockM(1) are then assigned to the wordsx0, ..., x7 of the
block cipherEncComp512:
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x0 = 6162638000000000,

x1 = 0000000000000000,

x2 = 0000000000000000,

x3 = 0000000000000000,

x4 = 0000000000000000,

x5 = 0000000000000000,

x6 = 0000000000000000,

x7 = 0000000000000000.

The following schedule shows the hex values forx0, ..., x7, after roundr of the “for r = 0 to
31” loop described in Sec. 5.5.2, Figure 22, step 2.

x0/x4 x1/x5 x2/x6 x3/x7

r = 0 : 230d5e40851cb824 230d5e40851cb824 6162638000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

r = 1 : bb27b99ec31efd17 648097e5093a10e8 230d5e40851cb824 230d5e40851cb824

6162638000000000 0000000000000000 0000000000000000 0000000000000000

r = 2 : 6612e1d8b6e40600 32851c3f32409f9f bb27b99ec31efd17 648097e5093a10e8

230d5e40851cb824 230d5e40851cb824 6162638000000000 0000000000000000

r = 3 : fb75bbde6c95c571 04131e4ec79b2add 6612e1d8b6e40600 32851c3f32409f9f

bb27b99ec31efd17 648097e5093a10e8 230d5e40851cb824 230d5e40851cb824

r = 4 : cb0cfe8fae16735e 2b075e87a69cc50e fb75bbde6c95c571 04131e4ec79b2add

6612e1d8b6e40600 32851c3f32409f9f bb27b99ec31efd17 648097e5093a10e8

r = 5 : 6fcb2839c4c9a227 da92ab977e57abbc cb0cfe8fae16735e 2b075e87a69cc50e

fb75bbde6c95c571 04131e4ec79b2add 6612e1d8b6e40600 32851c3f32409f9f

r = 6 : a4f0de3f7d0c4336 8a64ab6504493a96 6fcb2839c4c9a227 da92ab977e57abbc

cb0cfe8fae16735e 2b075e87a69cc50e fb75bbde6c95c571 04131e4ec79b2add

r = 7 : 2d375a2eabab1fb7 9d423a20138e5bfc a4f0de3f7d0c4336 8a64ab6504493a96

6fcb2839c4c9a227 da92ab977e57abbc cb0cfe8fae16735e 2b075e87a69cc50e

r = 8 : 91f43770e29ae13f d11012d112c24993 2d375a2eabab1fb7 9d423a20138e5bfc

a4f0de3f7d0c4336 8a64ab6504493a96 6fcb2839c4c9a227 da92ab977e57abbc

r = 9 : 6f78095ab7e7710a 2b65442db2afafcf 91f43770e29ae13f d11012d112c24993

2d375a2eabab1fb7 9d423a20138e5bfc a4f0de3f7d0c4336 8a64ab6504493a96

r = 10 : b015b34805866e5c def53ced7729fc16 6f78095ab7e7710a 2b65442db2afafcf

91f43770e29ae13f d11012d112c24993 2d375a2eabab1fb7 9d423a20138e5bfc

r = 11 : 352afb43790c6555 245a789c29dd333e b015b34805866e5c def53ced7729fc16

6f78095ab7e7710a 2b65442db2afafcf 91f43770e29ae13f d11012d112c24993

r = 12 : 73ed27e5fa7e3a85 77d6013bfe2ab57c 352afb43790c6555 245a789c29dd333e

b015b34805866e5c def53ced7729fc16 6f78095ab7e7710a 2b65442db2afafcf

r = 13 : c050e54f26a2d76c e6d6f285cac7a8b8 73ed27e5fa7e3a85 77d6013bfe2ab57c

352afb43790c6555 245a789c29dd333e b015b34805866e5c def53ced7729fc16

r = 14 : 8c23abef0c1f1892 2207010d00310d9e c050e54f26a2d76c e6d6f285cac7a8b8

73ed27e5fa7e3a85 77d6013bfe2ab57c 352afb43790c6555 245a789c29dd333e

r = 15 : ab21c2e457cd9134 fd091afc000cb7ec 8c23abef0c1f1892 2207010d00310d9e

c050e54f26a2d76c e6d6f285cac7a8b8 73ed27e5fa7e3a85 77d6013bfe2ab57c
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r = 16 : fff52589b44e3be5 c0160d12659abe10 ab21c2e457cd9134 fd091afc000cb7ec

8c23abef0c1f1892 2207010d00310d9e c050e54f26a2d76c e6d6f285cac7a8b8

r = 17 : 8c27f5ce9e2ce604 43b106446c171dd0 fff52589b44e3be5 c0160d12659abe10

ab21c2e457cd9134 fd091afc000cb7ec 8c23abef0c1f1892 2207010d00310d9e

r = 18 : 12b77e2e7cf6684d ac5eb7afbd6a2bf7 8c27f5ce9e2ce604 43b106446c171dd0

fff52589b44e3be5 c0160d12659abe10 ab21c2e457cd9134 fd091afc000cb7ec

r = 19 : bd88e91fbfb40826 c3ffdde8c288de20 12b77e2e7cf6684d ac5eb7afbd6a2bf7

8c27f5ce9e2ce604 43b106446c171dd0 fff52589b44e3be5 c0160d12659abe10

r = 20 : e133d378b46baa78 373236579c0bebc7 bd88e91fbfb40826 c3ffdde8c288de20

12b77e2e7cf6684d ac5eb7afbd6a2bf7 8c27f5ce9e2ce604 43b106446c171dd0

r = 21 : a8c43cbd33bdd476 cd67e506633b8775 e133d378b46baa78 373236579c0bebc7

bd88e91fbfb40826 c3ffdde8c288de20 12b77e2e7cf6684d ac5eb7afbd6a2bf7

r = 22 : 2881837893fb5d4c e2cabe5977a080be a8c43cbd33bdd476 cd67e506633b8775

e133d378b46baa78 373236579c0bebc7 bd88e91fbfb40826 c3ffdde8c288de20

r = 23 : 7409957b1ff2a49b 0d7ec50153a4c843 2881837893fb5d4c e2cabe5977a080be

a8c43cbd33bdd476 cd67e506633b8775 e133d378b46baa78 373236579c0bebc7

r = 24 : 09dee13209daf22d 77c8a8106f844467 7409957b1ff2a49b 0d7ec50153a4c843

2881837893fb5d4c e2cabe5977a080be a8c43cbd33bdd476 cd67e506633b8775

r = 25 : 1e7a8da467fe41b2 cb9135c1f1e31e2b 09dee13209daf22d 77c8a8106f844467

7409957b1ff2a49b 0d7ec50153a4c843 2881837893fb5d4c e2cabe5977a080be

r = 26 : 1a8bc5e7f3c751ba 1296cc83c92683ae 1e7a8da467fe41b2 cb9135c1f1e31e2b

09dee13209daf22d 77c8a8106f844467 7409957b1ff2a49b 0d7ec50153a4c843

r = 27 : beb513de6ac4513e 4837fc7fe45b2fc3 1a8bc5e7f3c751ba 1296cc83c92683ae

1e7a8da467fe41b2 cb9135c1f1e31e2b 09dee13209daf22d 77c8a8106f844467

r = 28 : 515adc58554c68d2 08cd3bb067a2b546 beb513de6ac4513e 4837fc7fe45b2fc3

1a8bc5e7f3c751ba 1296cc83c92683ae 1e7a8da467fe41b2 cb9135c1f1e31e2b

r = 29 : 5cbd07b2788db208 12d63beeeafbed6c 515adc58554c68d2 08cd3bb067a2b546

beb513de6ac4513e 4837fc7fe45b2fc3 1a8bc5e7f3c751ba 1296cc83c92683ae

r = 30 : 3f8622891a4fda5e 4dee38cb466d4328 5cbd07b2788db208 12d63beeeafbed6c

515adc58554c68d2 08cd3bb067a2b546 beb513de6ac4513e 4837fc7fe45b2fc3

r = 31 : 5f1d8da5cf51d123 2edc631fd504b5c4 3f8622891a4fda5e 4dee38cb466d4328

5cbd07b2788db208 12d63beeeafbed6c 515adc58554c68d2 08cd3bb067a2b546

That completes the processing of thefirst message blockM(1). The intermediate hash value
H(1) is calculated to be

H(0)
0 = 5f1d8da5cf51d123 ⊕ 6162638000000000 = 3e7fee25cf51d123

H(0)
1 = 2edc631fd504b5c4 ⊕ 0000000000000000 = 2edc631fd504b5c4

H(0)
2 = 3f8622891a4fda5e ⊕ 0000000000000000 = 3f8622891a4fda5e

H(0)
3 = 4dee38cb466d4328 ⊕ 0000000000000000 = 4dee38cb466d4328

H(0)
4 = 5cbd07b2788db208 ⊕ 0000000000000000 = 5cbd07b2788db208

H(0)
5 = 12d63beeeafbed6c ⊕ 0000000000000000 = 12d63beeeafbed6c

H(0)
6 = 515adc58554c68d2 ⊕ 0000000000000000 = 515adc58554c68d2

H(0)
7 = 08cd3bb067a2b546 ⊕ 0000000000000000 = 08cd3bb067a2b546

The words of thesecondpadded message blockM(2) are then assigned to the wordsx0, ..., x7 of
the block cipherEncOut512:
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x0 = 0000000000000000,

x1 = 0000000000000000,

x2 = 0000000000000000,

x3 = 0000000000000000,

x4 = 0000000000000000,

x5 = 0000000000000000,

x6 = 0000000000000000,

x7 = 0000000000000018.

The following schedule shows the hex values forx0, ..., x7, after roundr of the “for r = 0 to
31” loop described in Sec. 5.5.2, Figure 24, step 2.

x0/x4 x1/x5 x2/x6 x3/x7

r = 0 : d97eb976b5cae7b2 f6e54f8f9f2f838c 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

r = 1 : 1bb657b228019226 eeccd8d36781fe4a d97eb976b5cae7b2 f6e54f8f9f2f838c

0000000000000000 0000000000000000 0000000000000000 0000000000000000

r = 2 : fb6c651cb07f0756 a4eafa7e37812406 1bb657b228019226 eeccd8d36781fe4a

d97eb976b5cae7b2 f6e54f8f9f2f838c 0000000000000000 0000000000000000

r = 3 : a54cc7495c328d80 11cd3d4dbfbd126f fb6c651cb07f0756 a4eafa7e37812406

1bb657b228019226 eeccd8d36781fe4a d97eb976b5cae7b2 f6e54f8f9f2f838c

r = 4 : 4c33a91a8f0df69d 42cfd1a98b14a699 a54cc7495c328d80 11cd3d4dbfbd126f

fb6c651cb07f0756 a4eafa7e37812406 1bb657b228019226 eeccd8d36781fe4a

r = 5 : a7a8282b6e3c3bb3 87a6d999479b1222 4c33a91a8f0df69d 42cfd1a98b14a699

a54cc7495c328d80 11cd3d4dbfbd126f fb6c651cb07f0756 a4eafa7e37812406

r = 6 : 07e6dcc7565cb26c 13201c3510519a92 a7a8282b6e3c3bb3 87a6d999479b1222

4c33a91a8f0df69d 42cfd1a98b14a699 a54cc7495c328d80 11cd3d4dbfbd126f

r = 7 : 20915656a888c4e2 abd14e2c830859b9 07e6dcc7565cb26c 13201c3510519a92

a7a8282b6e3c3bb3 87a6d999479b1222 4c33a91a8f0df69d 42cfd1a98b14a699

r = 8 : 6575618e1f64665c 29e8dc7ae201a791 20915656a888c4e2 abd14e2c830859b9

07e6dcc7565cb26c 13201c3510519a92 a7a8282b6e3c3bb3 87a6d999479b1222

r = 9 : 822c1e21e65471fd de5bf43484a52d25 6575618e1f64665c 29e8dc7ae201a791

20915656a888c4e2 abd14e2c830859b9 07e6dcc7565cb26c 13201c3510519a92

r = 10 : 81c44e19575d610e d312147aea845dac 822c1e21e65471fd de5bf43484a52d25

6575618e1f64665c 29e8dc7ae201a791 20915656a888c4e2 abd14e2c830859b9

r = 11 : 6da03e2875c1eb8b e007b149234c2039 81c44e19575d610e d312147aea845dac

822c1e21e65471fd de5bf43484a52d25 6575618e1f64665c 29e8dc7ae201a791

r = 12 : 9fe7019fcc3ac5ae bf0eb2daf37379d8 6da03e2875c1eb8b e007b149234c2039

81c44e19575d610e d312147aea845dac 822c1e21e65471fd de5bf43484a52d25

r = 13 : 1737980bb2b545bb a9d4b5b23da13cce 9fe7019fcc3ac5ae bf0eb2daf37379d8

6da03e2875c1eb8b e007b149234c2039 81c44e19575d610e d312147aea845dac

r = 14 : dc84d51d1978f12c e080e9dfb6ca8a13 1737980bb2b545bb a9d4b5b23da13cce

9fe7019fcc3ac5ae bf0eb2daf37379d8 6da03e2875c1eb8b e007b149234c2039

r = 15 : 1a1297a192d1db02 35e7c35321f0b6bb dc84d51d1978f12c e080e9dfb6ca8a13

1737980bb2b545bb a9d4b5b23da13cce 9fe7019fcc3ac5ae bf0eb2daf37379d8
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r = 16 : 3e41c264f01d726d 923b6d1e72db4bba 1a1297a192d1db02 35e7c35321f0b6bb

dc84d51d1978f12c e080e9dfb6ca8a13 1737980bb2b545bb a9d4b5b23da13cce

r = 17 : 0ad1d941331b1c98 79e2862b3e66fd09 3e41c264f01d726d 923b6d1e72db4bba

1a1297a192d1db02 35e7c35321f0b6bb dc84d51d1978f12c e080e9dfb6ca8a13

r = 18 : aaca47e2b0fe3f5a 7156642dcda2eb29 0ad1d941331b1c98 79e2862b3e66fd09

3e41c264f01d726d 923b6d1e72db4bba 1a1297a192d1db02 35e7c35321f0b6bb

r = 19 : 6dafc52cc1d0d547 1e36608071dac5e3 aaca47e2b0fe3f5a 7156642dcda2eb29

0ad1d941331b1c98 79e2862b3e66fd09 3e41c264f01d726d 923b6d1e72db4bba

r = 20 : ec35e37d43c01678 5496d9fe8035083f 6dafc52cc1d0d547 1e36608071dac5e3

aaca47e2b0fe3f5a 7156642dcda2eb29 0ad1d941331b1c98 79e2862b3e66fd09

r = 21 : 389f9e00f826d720 bbbf18bfc2e461d6 ec35e37d43c01678 5496d9fe8035083f

6dafc52cc1d0d547 1e36608071dac5e3 aaca47e2b0fe3f5a 7156642dcda2eb29

r = 22 : ab6f2ad05f521c37 fe4bf32629570c7e 389f9e00f826d720 bbbf18bfc2e461d6

ec35e37d43c01678 5496d9fe8035083f 6dafc52cc1d0d547 1e36608071dac5e3

r = 23 : 389b51e96af17430 c05eab0119af37df ab6f2ad05f521c37 fe4bf32629570c7e

389f9e00f826d720 bbbf18bfc2e461d6 ec35e37d43c01678 5496d9fe8035083f

r = 24 : 218aa1db06fb8b1e c60ccf05c24eecde 389b51e96af17430 c05eab0119af37df

ab6f2ad05f521c37 fe4bf32629570c7e 389f9e00f826d720 bbbf18bfc2e461d6

r = 25 : 9690419f78d28e70 5d0062be2e88926e 218aa1db06fb8b1e c60ccf05c24eecde

389b51e96af17430 c05eab0119af37df ab6f2ad05f521c37 fe4bf32629570c7e

r = 26 : f8090120f1560a5e cc9fc6a753650358 9690419f78d28e70 5d0062be2e88926e

218aa1db06fb8b1e c60ccf05c24eecde 389b51e96af17430 c05eab0119af37df

r = 27 : 43789bad36235573 f9f1a2385da67c35 f8090120f1560a5e cc9fc6a753650358

9690419f78d28e70 5d0062be2e88926e 218aa1db06fb8b1e c60ccf05c24eecde

r = 28 : b7e7e0d12698f72f bfae42089b2f3fbf 43789bad36235573 f9f1a2385da67c35

f8090120f1560a5e cc9fc6a753650358 9690419f78d28e70 5d0062be2e88926e

r = 29 : e9c341998ad40243 b6783342a6634059 b7e7e0d12698f72f bfae42089b2f3fbf

43789bad36235573 f9f1a2385da67c35 f8090120f1560a5e cc9fc6a753650358

r = 30 : 1efb9c25cbcfb52c aab3b143bf427ceb e9c341998ad40243 b6783342a6634059

b7e7e0d12698f72f bfae42089b2f3fbf 43789bad36235573 f9f1a2385da67c35

r = 31 : 81a5e646a12c0381 b119c3d7aa83da41 1efb9c25cbcfb52c aab3b143bf427ceb

e9c341998ad40243 b6783342a6634059 b7e7e0d12698f72f bfae42089b2f3fbf

That completes the processing of the second and final messageblock M(2). The final hash value
H(2) is calculated to be

H(2)
0 = 81a5e646a12c0381 ⊕ 0000000000000000 = 81a5e646a12c0381,

H(2)
1 = b119c3d7aa83da41 ⊕ 0000000000000000 = b119c3d7aa83da41,

H(2)
2 = 1efb9c25cbcfb52c ⊕ 0000000000000000 = 1efb9c25cbcfb52c,

H(2)
3 = aab3b143bf427ceb ⊕ 0000000000000000 = aab3b143bf427ceb,

H(2)
4 = e9c341998ad40243 ⊕ 0000000000000000 = e9c341998ad40243,

H(2)
5 = b6783342a6634059 ⊕ 0000000000000000 = b6783342a6634059,

H(2)
6 = b7e7e0d12698f72f ⊕ 0000000000000000 = b7e7e0d12698f72f,

H(2)
7 = bfae42089b2f3fbf ⊕ 0000000000000018 = bfae42089b2f3fa7.

The resulting 512-bit message digest is

81a5e646a12c0381 b119c3d7aa83da41 1efb9c25cbcfb52c aab3b143bf427ceb

e9c341998ad40243 b6783342a6634059 b7e7e0d12698f72f bfae42089b2f3fa7.
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6 Performance Figures

We present some performance figures for the Lesamnta algorithms here.

6.1 Software Implementation

6.1.1 8-bit Processors

Lesamnta has been implemented in C and assembly languages for 8-bit processors.

6.1.1.1 Implementation on AtmelR© AVR R© ATmega8515 Processor

Lesamnta was implemented on the AtmelR© AVR R© ATmega8515 processor in the assembly
language, using AtmelR©’s AVR studioR© as a development environment and simulator. The
performance results are shown in Table 1.

Table 1: Execution time and memory requirements for Lesamnta on the AtmelR© AVR R©

ATmega8515 in assembly language

Message digest Execution time Memory requirements
size Bulk speed One-block messageConstant data Code length RAM

(cycles/byte) (cycles/message) (bytes) (bytes) (bytes)
224 631 47312 256 1118 66

901 69678 256 456 68
256 631 47312 256 1118 66

901 69678 256 456 68
384 783 114031 256 2604 132

988 147088 256 928 135
512 783 114031 256 2604 132

988 147088 256 928 135

The second and third columns list the execution time for hashing. The former corresponds to
bulk speed, that is throughput speed when hashing a long message. The latter is for the execution
time to hash a 256-bit message with Lesamnta-224 or Lesamnta-256 and a 512-bit message with
Lesamnta-384 or Lesamnta-512. The fourth, fifth and sixth columns list memory requirements.
The fourth lists the size of constant data and the fifth lists the code length of instructions. The
sixth column lists the RAM size. Since Lesamnta does not haveany other algorithm than the main
algorithm, which processes messages and chaining values, the algorithm setup takes no time.

Time-Memory Trade-Off All the implementations above have only an S-box table of 256bytes.
The difference of code length between the implementations comes from whether internal functions
are inlined or not. Then, the time-memory tradeoff can be seen on Table 1.
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6.1.1.2 RenesasR© H8 R©/300L Processor

Lesamnta was implemented on the RenesasR© H8R©/300L processor in assembly and C languages,
using RenesasR©’s High-performance Embedded Workshop as a development environment and
simulator. The performance results are shown in Tables 2 and3.

Table 2: Execution time and memory requirements for Lesamnta on the RenesasR© H8R©/300L
processor in assembly language

Messge digest Execution time Memory requirements
size Bulk speed One-block messageConstant data Code length RAM

(cycles/byte) (cycles/message) (bytes) (bytes) (bytes)
224 1526 114660 512 904 80
256 1526 114660 512 904 80

Table 3: Execution time and memory requirements for Lesamnta on the RenesasR© H8R©/300L
processor in C language

Messge digest Execution time Memory requirements
size Bulk speed One-block messageConstant data Code length RAM

(cycles/byte) (cycles/message) (bytes) (bytes) (bytes)
224 5442 429232 256 1140 62
256 5442 429232 256 1140 62
384 7551 1012408 256 1712 123
512 7551 1012408 256 1712 123

In the tables, the second and third columns list the execution time for hashing. The former
corresponds to bulk speed, that is throughput speed when hashing a long message. The latter
is for the execution time to hash a 256-bit message with Lesamnta-224 or Lesamnta-256 and a
512-bit message with Lesamnta-384 or Lesamnta-512. The fourth, fifth and sixth columns list
memory requirements. The fourth lists the size of constant data and the fifth lists the code length
of instructions. The sixth column lists the stack size. Since Lesamnta does not have any other
algorithm than the main algorithm, which processes messages and chaining values, the algorithm
setup takes no time.

6.1.2 32-bit Processors

Here, we show some performance figures for Lesamnta on 32-bitprocessors.

6.1.2.1 ANSI C Implementation on NIST Reference Platform

We implemented Lesamnta in ANSI C language on the NIST Reference Platform. The NIST
Reference Platform contains the IntelR© Core

TM
2Duo E6600 processor, MicrosoftR©’s VisualStudioR©

2005 C++ compiler and Windows VistaR© Ultimate 32-bit Edition. The platform is shown at Table
4. This implementation follows the NIST API format.
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Table 4: NIST Reference Platform
Language CPU Memory OS Compiler

Core
TM

2 Duo Windows VistaR©

ANSI C E6600 (2.4GHz) 2 GBytes Ultimate 32-bit Edition VisualStudioR©2005

Table 5 shows performance figures of the implementation. Thesecond column lists the
execution time to hash a long message, which corresponds to bulk speed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-224 orLesamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shows the size of constant data which are
look-up tables, round constants and initial vectors. The size of the look-up tables dominates the
value. Since Lesamnta does not have any other algorithm thanthe main algorithm, which processes
messages and chaining values, the algorithm setup takes no time.

Note that the result for the implementation includes overhead coming from the NIST API
format.

Table 5: Performance figure of implementations in ANSI C language with NIST API on the NIST
Reference Platform

Message digest Execution time Memory requirement
size Bulk speed One-block message Constant data

(cycles/byte) (cycles/message) (bytes)
224 68.9 5709 8288
256 68.9 5709 8288
384 97.7 14320 12416
512 97.7 14320 12416

6.1.2.2 Assembly Implementation on IntelR© Core
TM

2 Duo E6600 Processor

Here, we show performance figures of assembly implementations of Lesamnta on the IntelR©

Core
TM

2 Duo processor. The used platform is shown at Table 6.

Table 6: NIST Reference Platform
Language CPU Memory OS Compiler

Core
TM

2 Duo UbuntuR© Linux R© 8.04
Assembly E6600 (2.4GHz) 2 GBytes 32-bit distribution gnu as

Table 7 shows performance figures of the implementations. The second column lists the
execution time to hash a long message, which corresponds to bulk speed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-224 orLesamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shows the size of constant data which are
look-up tables, round constants and initial vectors. The size of the look-up tables dominates the
value. The fifth column lists the code length of the instructions. The sixth column lists the size of
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stack. Since Lesamnta does not have any other algorithm thanthe main algorithm, which processes
messages and chaining values, the algorithm setup takes no time.

Table 7: Performance figure of implementations in assembly language on the IntelR© Core
TM

2 Duo
processor

Message digest Execution time Memory requirements
size Bulk speed One-block messageConstant data Code length Stack

(cycles/byte) (cycles/message) (bytes) (bytes) (bytes)
224 59.2 4750 8288 5705 84

100.2 8383 1632 7463 84
256 59.2 4750 8288 5705 84

100.2 8383 1632 7463 84
384 54.5 8827 20608 10944 148

71.5 10968 9344 13549 148
512 54.5 8827 20608 10944 148

71.5 10968 9344 13549 148

Time-Memory Tradeoff As is seen from Table 7, there is tradeoff between the speed of hashing
and the size of look-up tables.

6.1.2.3 ANSI C Implementation on ARMR© ARM926EJ-S
TM

Processor

Lesamnta was implemented on the ARMR© ARM926EJ-S
TM

processor in ANSI C language, using
ARM R©’s RealViewR© Development Suite as a development environment and simulator. The
performance results are shown in Table 8.

Table 8: Performance figure of implementations in ANSI C language with NIST API on the ARMR©

ARM926EJ-S
TM

processor

Message digest Execution time Memory requirement
size Bulk speed One-block message Constant data

(cycles/byte) (cycles/message) (bytes)
224 204.1 15978 8288
256 204.1 15978 8288
384 244.0 34020 12416
512 244.0 34020 12416

Table 8 shows performance figures of the implementation. Thesecond column lists the
execution time to hash a long message, which corresponds to bulk speed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-224 orLesamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shows the size of constant data which are
look-up tables, round constants and initial vectors. The size of the look-up tables dominates the
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value. Since Lesamnta does not have any other algorithm thanthe main algorithm, which processes
messages and chaining values, the algorithm setup takes no time.

6.1.3 64-bit Processor

Here, we show some performance figures for Lesamnta on a 64-bit processor.

6.1.3.1 ANSI C Implementation on NIST Reference Platform

We implemented Lesamnta in ANSI C language on the NIST Reference Platform. The
NIST Reference Platform contains the IntelR© Core

TM
2 Duo 2.4GHz processor, MicrosoftR©’s

VisualStudioR© 2005 C++ compiler and Windows VistaR© Ultimate 64-bit Edition. The platform
is shown at Table 9. Moreover, the implementation follows the NIST API format.

Table 9: NIST 64-bit Reference Platform
Language CPU Memory OS Compiler

Core
TM

2 Duo Windows VistaR©

ANSI C E6600 (2.4GHz) 2 GBytes 64-bit Edition VisualStudioR© 2005

Table 10 shows performance figures of the implementation. The second column lists the
execution time to hash a long message, which corresponds to bulk speed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-224 orLesamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shows the size of constant data which are
look-up tables, round constants and initial vectors. The size of the look-up tables dominates the
value. Since Lesamnta does not have any other algorithm thanthe main algorithm, which processes
messages and chaining values, the algorithm setup takes no time.

Note that the result for the implementation includes overhead coming from the NIST API
format.

Table 10: Performance figure of implementations in ANSI C language with NIST API on the NIST
64-bit Reference Platform

Message digest Execution time Memory requirement
size Bulk speed One-block message Constant data

(cycles/byte) (cycles/message) (bytes)
224 78.4 6581 8288
256 78.4 6581 8288
384 65.4 10962 24704
512 65.4 10962 24704

6.1.3.2 Assembly Implementation on IntelR© Core
TM

2 Duo Processor

Here, we show performance figures of assembly implementations of Lesamnta on the IntelR©

Core
TM

2 Duo processor. The used platform is shown at Table 11.
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Table 11: 64-bit Platform used for measurement of assembly codes

Language CPU Memory OS Compiler
Core

TM
2 Duo UbuntuR© Linux R© 8.04

Assembly E6600 (2.4GHz) 2 GBytes 64-bit distribution gnu as

Table 12 shows performance figures of the implementations. The second column lists the
execution time to hash a long message, which corresponds to bulk speed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-224 orLesamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth, fifth and sixth columns list memory requirements.
The fourth column shows the size of constant data which are look-up tables, round constants and
initial vectors. The size of the look-up tables dominates the value. The fifth column lists the code
length of the instructions. The sixth column lists the size of stack. Since Lesamnta does not have
any other algorithm than the main algorithm, which processes messages and chaining values, the
algorithm setup takes no time.

Table 12: Performance figure of implementations in assemblylanguage on the IntelR© Core
TM

2 Duo
processor

Message digest Execution time Memory requirements
size Bulk speed One-block messageConstant data Code length Stack

(cycles/byte) (cycles/message) (bytes) (bytes) (bytes)
224 52.7 4318 16672 5921 88

93.8 8151 1824 7817 80
256 52.7 4318 16672 5921 88

93.8 8151 1824 7817 80
384 51.2 8373 24704 12326 200

70.8 10752 9344 13948 208
512 51.2 8373 24704 12326 200

70.8 10752 9344 13948 208

Time-Memory Tradeoff As is seen from Table 12, there is tradeoff between the speed of hashing
and the size of look-up tables.

6.2 Hardware

6.2.1 ASIC Implementation

We made estimations for speed and gate count of several different hardware architectures of
Lesamnta. These estimates are based on existing 90 nm CMOS standard cell library. A gate is
a two-input NAND equivalent. The results are shown in Table 13.
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Table 13: ASIC implementation estimates of Lesamnta

Message digest Architecture Gate count Max. frequency Throughput
size (k gates) (MHz) (Mbps)

Speed Optimized 190.1 282.5 6026.4
256 Balance Optimized 68.0 636.9 3623.5

Area Optimized 20.7 169.8 336.9
Speed Optimized 393.0 234.2 9992.2

512 Balance Optimized 144.9 571.4 6501.6
Area Optimized 44.3 144.1 571.9

7 Tunable Security Parameters

Lesamnta provides the following tunable security parameters.

1. The number of rounds forEncComp256: Nr comp256;

2. The number of rounds forEncOut256: Nr out256;

3. The number of rounds forEncComp512: Nr comp512; and

4. The number of rounds forEncOut512: Nr out512.

Choosing the values for these parameters enables selectionof a range of possible
security/performance tradeoffs. Considering the security analysis results described in Sec. 12,
however, we recommend a value of 32 for each of these parameters, as specified in Sec. 5.
Hereafter, we denote this recommended value of 32 bynR.

8 Design Rationale

8.1 Block-Cipher-Based Hash Functions

The design rationale of Lesamnta is based on achieving the following goals:

• To provide the same application program interface as that ofthe SHA-2 family;

• To ensure both attack-based security and proof-based security; and

• To be efficient on a wide range of platforms.

To achieve these goals, we adopted an iterative hash function based on the block cipher as the basic
design. Since the idea of building hash functions from blockciphers goes back more than 30 years,
the enormous volume of research on this idea helped us to design Lesamnta.

Hence, Lesamnta basically follows a traditional design butincorporates new methods to resist
recent attacks and provide security proof.
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8.2 Domain Extension

The domain extension scheme of Lesamnta is designed to achieve the following goals: efficiency
comparable to that of the Merkle-Damgård iteration, and security against the length-extension
attack. The scheme consists of the Merkle-Damgård iteration of the compression function,
enveloped with the output function. We call this MDO, and it is illustrated in Figure 31. Unlike the
NMAC-like domain extension in [9], the output functiong has the last block of a padded message
input as a part of the input. The output function avoids the length-extension attack. The overhead
of the output function is small, since it shares components with the compression function.

h h h gH 
(0)

M 
(1)

M 
(2)

M 
(N−1)

M 
(N)

Figure 31: Domain extension scheme MDO.h is the compression function, andg is the output
function. pad(M) = M(1)‖M(2)‖ · · · ‖M(N−1)‖M(N), wherepad is the padding function andM is a
message input.

8.3 Compression Function

8.3.1 PGV Mode

The criteria taken into account in designing the compression function are the following:

• Efficiency equal to that of the underlying block cipher;

• Provable security in theoretical models; and

• Security evaluation using attacks against block ciphers.

The first criterion implies that the compression function should be as efficient as the underlying
block cipher in terms of any computational resource. The second and third criteria imply that the
security aspects of the compression function can be reducedto those of the block cipher.

The PGV modes [7] meet the first criterion, because they use the block cipher exactly one time.
Not all PGV modes, however, meet the second criterion. It hasbeen shown that the twelve PGV
modes are secure in the ideal cipher model in terms of collision resistance and preimage resistance
[7].

Lesamnta uses the Matyas-Meyer-Oseas (MMO) mode, which is one of the secure PGV modes
in terms of collision resistance and preimage resistance. The MMO mode is defined as follows:

h(H(i−1),M(i)) = E(H(i−1),M(i)) ⊕ M(i) ,

whereE is an encryption function andH(i−1) works as a key, as illustrated in Figure 32 [24].
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M(i)

H(i)

H(i−1) E

Figure 32: Matyas-Meyer-Oseas (MMO) mode

The MMO mode has no feedforward of the key, but only feedforward of the message. Compared
with the other eleven secure PGV modes, it is easier to analyze the security of the MMO mode with
block-cipher attacks. Thus, the security of the MMO mode canbe reduced to the security of an
underlying block cipher, in the senses of both proof-based security and attack-based security.

8.4 Output Function

To increase the security margin in terms of pseudo-randomness and to offer a tradeoff between
security and efficiency, Lesamnta uses an output functiong, constructed from an encryption
functionL in the following manner:

g(H(N−1),M(N)) = L(H(N−1),M(N)) ⊕ M(N) .

8.5 Block Ciphers

Each of the four Lesamnta algorithms uses two block ciphers,E and L. We set the following
requirements as goals for our design of these underlying block ciphers.

• 256-bit block ciphers for Lesamnta-224/256 and 512-bit block ciphers for
Lesamnta-384/512.

• Key lengths of 256 bits for the 256-bit block ciphers and 512 bits for the 512-bit block ciphers

• Resistance against known attacks.

• Design simplicity:

To facilitate ease of security analysis:

To facilitate ease of implementation.

• Speed on processors for general purposes, on processors forservers, on future processors,
and on various hardware platforms.

• Capable of implementation on an 8-bit processor with a smallamount of RAM.

• Capable of implementation on hardware with a small gate count.
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C(0)

C(1)

C(nR−1) fK

fK

fK

fM

fM

fM

Key input Plaintext input

Output

Round
constants

Key scheduling
function

Mixing
function

Figure 33: Structure of the encryption function for the hashfunction,E

Figure 33 shows an overview of the encryption functionE.
The encryption functionE is broken into two parts to process data: the key scheduling function

and the mixing function. Each of these iteratively uses a sub-function. Therefore, we denote the
corresponding sub-functions for the key scheduling function and mixing function byfK and fM,
respectively.

Figure 34 shows an overview of the encryption functionL.
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Figure 34: Structure of the encryption function for the output function,L

The structure ofL is similar to that ofE. In L, both the key scheduling function and the mixing
function usefM as the round function.
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9 Motivation for Design Choices

9.1 Padding Method

The padding method of Lesamnta adopts Merkle-Damgård strengthening. Thus, the last block of a
padded message includes the binary representation of the length of the message input.

For the padding method of Lesamnta, the last block does not contain any part of the message
input. It only contains the length of the message input. As shown in Figs. 6 and 7 or Figs. 8 and
9, there are at most two possibilities for the last block corresponding to the remaining blocks. This
property is necessary to prove that Lesamnta is indifferentiable from a random oracle in the ideal
cipher model.

9.2 MMO Mode

We have four motivations for choosing the MMO mode.

1. Attack-based security
From the viewpoint of attacks on a block cipher, recent collision-finding attacks use the
fact that an attacker can directly control the key of a block cipher. This is because popular
hash functions such as the SHA-2 family use the Davies-Meyer(DM) mode with a poor key
scheduling function. In contrast, the MMO mode does not allow the attacker to control the
key of a block cipher. Rather, since the key corresponds to the previous chaining values, the
attack must control the chaining values by varying the message block. When we assume that
the key (i.e., the previous chaining values) is fixed for the attacker, the attack model is similar
to the attack model of block-cipher cryptanalysis. Then, known countermeasures against
block-cipher cryptanalysis can be applied to design a secure MMO mode.

2. Proof-based security
The MMO mode enables us to reduce the security of Lesamnta to that of the underlying block
ciphers to a greater extent than with the DM mode used by the SHA family. In particular,
the PRF property of HMAC is almost reduced to the PRP propertyof the underlying block
ciphers. Furthermore, Lesamnta can be shown indifferentiable from a random oracle in the
ideal cipher model.

3. Efficiency of implementation
The computational resources required by the MMO mode are almost the same as those
required by the block cipher. In particular, the following properties contribute to
performance:

• The number of invocations of the block cipher is exactly one.

• The size of the internal buffer is less than that of other secure PGV modes such as the
Miyaguchi-Preneel mode.

• The output length is equal to that of the block cipher.
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4. Resistance against side-channel attacks
Side-channel attacks should be taken into account in hardware implementation. It has been
pointed out that one can perform side-channel attacks on HMAC with hash functions using
the DM mode, such as the SHA family [27]. We thus adopt the MMO mode, with which
HMACs remains secure against side-channel attacks.

9.3 Output Function

The primary purpose of the output function is to make length-extension attacks impossible.
Resisting length-extension attacks requires that the following tasks be infeasible, whereh andg
are the compression function and the output function, respectively.

• To find H(k−1),M(k) satisfyingh(H(k−1),M(k)) = g(H(k−1),M(k)); and

• To find H(N−1) satisfyingy = g(H(N−1),M(N)) for giveny andM(N).

In Lesamnta,h andg are in the MMO mode, but the underlying block ciphers are different. The use
of different block ciphers is effective in making the first task infeasible. To make the secondtask
infeasible, Lesamnta uses a well-designed underlying block cipher forg. Additionally, to keep the
implementation cost low, the block cipher ofg consists of only the mixing function ofh.

9.4 Block Cipher

Each algorithm of Lesamnta uses two block ciphersE andL. E is used in the compression function
and the other is used in the output function. For reducing thehardware complexity,E shares the
mixing function withL. In addition, the mixing function is identical to the key scheduling function
in L except that the additional input parameter changes from theround key to the round constant.

The block size and key size of the block ciphers are both 256 (512) bits for Lesamnta-256
(Lesamnta-512). The block cipher plays an important role inboth ensuring resistance against
cryptanalytic attacks and achieving high performance. To meet these requirements, for the round
function, we adopt a well-studied Feistel network and applythe design approach of AES in
designing the F function, which is the most significant component in the underlying block ciphers.
As a result, we can show that 12 rounds are secure against differential cryptanalysis in the sense
that the maximum differential characteristic probability is less than 2−256 (2−512).

9.4.1 Mixing Function

The plaintext is denoted byP = (p0, p1, . . . , p7), and the ciphertext byC = (c0, c1, . . . , c7). The
mixing function is defined as follows:

(x(0)
0 , x

(0)
1 , . . . , x

(0)
7 ) = (p0, p1, . . . , p7) ,

(x(r)
0 , x

(r)
1 , . . . , x

(r)
7 ) = fM(x(r−1)

0 , x(r−1)
1 , . . . , x(r−1)

7 ) 1 ≤ r ≤ nR ,

(c0, c1, . . . , c7) = (x(nR)
0 , x

(nR)
1 , . . . , x

(nR)
7 ) .
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9.4.1.1 Network in the Round Function

Our strategy to design the mixing function of Lesamnta is to construct it from block cipher
components whose security and efficiency have been well-studied. This is because techniques
to design and analyze block ciphers have been well understood through the AES competition. For
now, we know a lot about both how to design 64-bit or 128-bit block ciphers and how to evaluate
these ciphers.

Our design approach is to construct a 256-bit (512-bit) hashfunction from a 64-bit (128-bit)
block-cipher like permutation. In this respect, the Feistel network is more suitable than the SP
network since using the SP network would require to design 256-bit and 512-bit block ciphers
which we think are less mature in terms of design, analysis, and implementation.

F

Round key

Figure 35: Type 1 4-branch generalized Feistel network

The mixing function of the block cipher of Lesamnta uses a type 1 4-branch generalized
Feistel network (GFN) [36] for simplicity and hardware flexibility. It is illustrated in Fig. 35.
For implementation reasons, each of the branches is stored in two 32-bit (64-bit) words for
Lesamnta-256 (Lesamnta-512).

The round functionfM consists of XOR operations, a nonlinear functionF, and a wordwise
permutation. TheF function is a non-linear transformation with a two-word input and a two-word
round key inputK(r) taken from the key schedule, and a two-word output. The roundfunction fM

is defined as follows:
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0 ||x
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3 , x(r)
6 = x(r−1)

4 , x(r)
7 = x(r−1)

5 .

9.4.1.2 F Function

The functionsF256 andF512 are the most significant components in the underlying block ciphers.
Note that we denoteF256 and F512 by F when the message digest size is not relevant. Our
requirement on theF functions is both efficiency and resistance against known attacks such as
differential cryptanalysis. Another requirement on theF functions is inversibility for a given round
key to make the analysis of collision attacks easy. To designthe F functions, we applied one of
the most successful approaches known as the wide trail strategy [10] which is used in the design
of AES. We can show that the maximum differential characteristic probability for Lesamnta-256
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(Lesamnta-512) is less than 2−54 (2−150) by applying the Four-Round Propagation Theorem in the
wide trail strategy to theF functions:

Hereafter, we explain each step used in theF functions. In Lesamnta-224/256 and
Lesamnta-384/512, operations are performed on SubState256 and SubState512.

The functionsF256 andF512 are the composite mappings which are parameterized by the round
key:

F256 = F̃256◦ AddRoundKey256(),
whereF̃256= (ShiftRows256()◦ ByteTranspos256() ◦ SubBytes256())4.
F512 = F̃512◦ AddRoundKey512(),
whereF̃512= (ShiftRows512()◦ ByteTranspos512() ◦ SubBytes512())4.
The functionF is a sequence of transformations calledsteps like AES. The steps used in the

full Lesamnta are the round key addition step, the non-linear step, the byte transposition step, and
the linear diffusion step. For Lesamnta-384/512, each step inF512 is the same as the corresponding
step in AES.

9.4.1.3 Round Key Addition Step

The round key addition stepsAddRoundKey256() andAddRoundKey512() simply combine the
SubState with the round key by means of bitwise XOR operationto facilitate ease of security
analysis and of implementation.

9.4.1.4 Non-Linear Step

The non-linear stepsSubBytes256() andSubBytes512() consist of parallel applications of a
non-linear substitution box. As for the S-box, we apply the S-box used in AES, for security reasons
and implementation reasons. This S-box has the following properties:

• The maximum differential probabilities are 2−6.

• The S-box has no fixed points.

9.4.1.5 Byte Transposition Step

The byte transposition stepsByteTranspos256() and ByteTranspos512() cyclically shift
rows over different numbers of bytes (offsets). These offsets are selected in a way that
ByteTranspos256() andByteTranspos512() arediffusion optimal [10], which means that
the different bytes in each column are distributed over all different columns.

9.4.1.6 Linear Diffusion Step

The linear diffusion stepsShiftRows256() andShiftRows512() are linear mappings based
on the MDS code. An important diffusion measure introduced in [10] is thebranch number.
The branch numbers forShiftRows256() and ShiftRows512() are 3 and 5, respectively.
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ShiftRows256() andShiftRows512() have an effect to mix the bytes in each SubState256
column and in each SubState512 column, respectively.

9.4.2 Key Scheduling Function

Since the structure of the key scheduling function is similar to that of the mixing function, strong
non-linearity is ensured as compared with key scheduling functions of the SHA-2 family.

We designed the key scheduling function inE for the following purposes:

1. It introduces asymmetry which prevents symmetry betweenrounds leading to attacks such as
slide attacks.

2. It provides the resistance against pseudo-collision attacks.

Note that in the collision attack model, the attacker cannotcontrol the input to the key
scheduling function in a direct way due to the MMO mode while in the pseudo-collision
attack model, he can.

3. It should be efficient on a wide range of platforms.

For the security purposes, the key scheduling function usesthe type 1 general Feistel network
where the non-linear function uses the composition of a non-linear step and the linear diffusion step
as is commonly done in block ciphers. For the performance purposes, the linear diffusion step is
composed of a linear mapping based on a MDS code and a bytewisepermutation because linear
diffusion steps consisting of a single linear mapping based on a MDS code would be expensive. The
branch numbers of the linear mappings forE256 andE512 are 5 and 9, respectively. Since the key
scheduling function shares most of its components with the mixing function, an efficient hardware
implementation is possible.

9.4.3 Round Constants

The round constants introduce randomness, non-regularity, and asymmetry into the key scheduling
function. The round constants of Lesamnta are generated by acounter-like function (Sec. 5.1).
Each of two words of a round constant changes its value over rounds. This is because the linear
mapping used in the key schedule operates on one word rather than two.

In contrast, the round constants of popular hash functions are often generated from real numbers
such as

√
2. Hence, they are usually implemented via a large lookup table. Round constant

generation by a counter-like function is more suitable for ahardware efficient implementation on
resource-poor devices such as RFID tags than is generation by a large lookup table.
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10 Expected Strength and Security Goals

Table 14 shows the expected strength of Lesamnta for each of the security requirements (i.e., the
expected complexity of attacks). What values in Table 14 mean is explained below. The row
indicated by “HMAC” lists the approximate number of queriesrequired by any distinguishing
attack against HMAC using Lesamnta. The row indicated by “PRF” lists the approximate number
of queries required by any distinguishing attack against the additional PRF modes described in
Sec. 13.1. The row indicated by “Randomized hashing” lists the approximate complexity to find
another pair of a message and a random value for a given pair ofa 2k-bit message and a random
value. The fourth row lists the approximate complexity of any collision attack. The fifth row lists
the approximate complexity of any preimage attack. The sixth row lists the approximate complexity
of the Kelsey-Schneier second-preimage attack with any first preimage shorter than 2k bits. The
seventh row lists the approximate number of queries required by any length-extension attack against
Lesamnta. A cryptanalytic attack may be a profound threat toLesamnta if its complexity is much
less than the complexity in Table 14.

Table 14: Expected strength of Lesamnta

Requirement Lesamnta

224 256 384 512

HMAC 2112 2128 2192 2256

PRF 2112 2128 2192 2256

Randomized hashing 2256−k 2256−k 2512−k 2512−k

Collision resistance 2112 2128 2192 2256

Preimage resistance 2224 2256 2384 2512

Second-preimage resistance2256−k 2256−k 2512−k 2512−k

Length-extension attacks 2112 2128 2192 2256

Table 14 includes proof-based strength and attack-based strength. The security proof of
Lesamnta is given as follows:

Proved security 1: Lesamnta is indifferentiable from a random oracle under the assumption that
block ciphersE, L are independent ideal ciphers.

This proof partially ensures the security of randomized hashing, collision resistance,
preimage resistance, second-preimage resistance, and length-extension attacks.

Proved security 2: Lesamnta is collision resistant under the assumption that the compression
functionh and the output functiong are collision resistant.

This proof ensures the security of collision resistance, and in part, preimage resistance and
second-preimage resistance.

Document version 1.0, Date: 30 October 2008
59



The Hash Function Family: Lesamnta SHA-3 Proposal

Proved security 3: Lesamnta is a pseudorandom function under the assumption that block ciphers
E, L are independent pseudorandom permutations.

This proof ensures the security of HMAC and PRF.

The attack-based strength is estimated in security analysis against known attacks described in
Sec. 12.

11 Security Reduction Proof

11.1 MMO Mode

11.1.1 Collision Resistance

The collision resistance of the MMO mode is proved in the ideal cipher model. The MMO mode
is given byh(H,M) = E(H,M) ⊕ M, whereE is an ideal cipher. Consider an infinitely powerful
adversaryA that makesq queries toE andE−1. Then, the col-advantage ofA is defined as

Advcol
h (A) = Pr

[
((H,M) , (H′,M′) ∧ h(H,M) = h(H′,M′))

∨h(H,M) = H(−1)|AE,E−1
= ((H,M), (H′,M′))

]
,

wheren is the block length ofE. According to Black et al.’s analysis [7], the col-advantage is given
by

0.039(q − 1)(q − 2)
2n

≤ Advcol
h (A) ≤ q(q + 1)

2n
.

The above inequality means that any adversary must make about 2n/2 queries to find a collision.
In Lesamnta, the dedicated block cipher is in place of the ideal cipherE. Although it is not the

ideal cipher, the above inequality suggests that the MMO mode is a good choice for designing a
compression function.

11.1.2 Preimage Resistance

The preimage resistance of the MMO mode is proved in the idealcipher model. Then, the
pre-advantage ofA is defined as, for any public constantK,

Advpre
h (A) = Pr

[
M < Q ∧ h(K,M) = H|AE,E−1

= (M,H)
]

whereQ is the set of messages thatA sends toE andA receives fromE−1 [7]. Sinceh(K,M) =
E(K,M) ⊕ M, the pre-advantage is transformed into

Advpre
h (A) = Pr

[
M < Q ∧ E(K,M) = H ⊕ M|AE,E−1

= (M,H)
]
.

Denoting byq the number of queries, we have

Advpre
h (A) =

1
2n − q

.
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In Lesamnta, the dedicated block cipher is in place of the ideal cipherE. Although it is not
the ideal cipher, the preimage resistance of the MMO mode is reduced to the correlation between a
plaintext and a ciphertext for a known key.

11.1.3 Pseudorandom Function

Consider an adversaryA that outputs a bit after making queries to an oracle. Supposethat K is
randomly chosen from a key space,ρ is a random function, andπ is a random permutation. Then,
the prf-advantage and the prp-advantage ofA is defined as

Advprf
E (A) =

∣∣∣∣Pr
[
AE(K,·) = 1

]
− Pr [Aρ = 1]

∣∣∣∣ ,

Advprp
E (A) =

∣∣∣∣Pr
[
AE(K,·) = 1

]
− Pr [Aπ = 1]

∣∣∣∣ ,

whereE is an underlying block cipher of the MMO mode. For any adversary A that makesq queries
to the oracle whereq < 2n/2, the PRP/PRF switching lemma yields

Advprp
E (A) − q(q − 1)

2n+1
≤ Advprf

E (A) ≤ Advprp
E (A) +

q(q − 1)
2n+1

.

Since the MMO modeh is given byh(K,M) = E(K,M) ⊕ M, there is an adversaryB that makes
queries the same times asA and has the same prf-advantage.

Advprf
h (B) = Advprf

E (A)

Hence, we have

Advprp
E (A) − q(q − 1)

2n+1
≤ Advprf

h (B) ≤ Advprp
E (A) +

q(q − 1)
2n+1

.

The above inequality roughly means that ifE is a secure block cipher, thenh is a pseudorandom
function.

11.2 MDO Domain Extension with MMO Functions

11.2.1 Collision Resistance

It is easy to see that Lesamnta is collision-resistant (CR) if its compression function and output
function are CR, that is, it is difficult to compute a pair of distinct (S , X) and (S ′, X′) such that

ES (X) ⊕ X = ES ′(X
′) ⊕ X′ or LS (X) ⊕ X = LS ′(X

′) ⊕ X′

for the underlying block ciphersE andL. Unfortunately, the pseudorandomness of a block cipher
cannot imply the property. It is easy to find a counterexample. However, it is still reasonable to
assume that well-designed block ciphers have this property.

The CR of Lesamnta can also be proved in the ideal cipher modelusing the technique by Black
et al. in [7].
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11.2.2 HMAC

Lesamnta supports HMAC specified in FIPS 198:

HMAC(K,M) = H((K ⊕ opad)‖H((K ⊕ ipad)‖M)) ,

whereH represents Lesamnta andK is a secret key. A diagram of HMAC using Lesamnta is given
in Figure 36.

E

M 
(1)

Kip

IV

M 
(N−1)

E E L

E

Kop

IV E L

1‖bin(|KopV |)

inner hashing

outer hashing

V

M 
(N)

Figure 36: Diagram of HMAC using Lesamnta.E and L are underlying (n, n) block ciphers.
Kip = K ⊕ ipad andKop = K ⊕ opad. For a massage inputM, pad(Kip‖M) = KipM(1) · · ·M(N),
wherepad is the padding function.bin(|KopV |) represents the (n − 1)-bit binary representation of
the length ofKop‖V.

The security of HMAC using Lesamnta is reduced to the security of the underlying block
ciphers. HMAC using Lesamnta resists any distinguishing attack that requires much fewer than
2n/2 queries if the underlying block ciphers are independent pseudorandom permutations and the
following function is a pseudorandom bit generator:

µE(K) = (EIV(Kop) ⊕ Kop)‖(EIV(Kip) ⊕ Kip) ,

whereKop = K ⊕ opad andKip = K ⊕ ipad. More precise statements and proofs are given in
Annex A.

11.2.3 Indifferentiability from the Random Oracle

Many cryptographic protocols are proved to be secure on the assumption that the underlying hash
functions are random oracles. Thus, it is important to support this kind of results by validating the
ideal assumption in such a way as in [9].

Lesamnta is shown to resist any attack to differentiate it from the random oracle with much
fewer than 2n/2 queries in the ideal cipher model. More precise statements are given in Annex B.
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12 Preliminary Analysis

In our preliminary analysis, we analyzed resistance of Lesamnta against various kinds of
known attacks such as attacks collision-finding, first-preimage-finding, second-preimage-finding,
length-extension attack, multicollision attack. The bestresults on attacks on Lesamnta-256 are a
collision finding attack on 16 rounds with a complexity 297, a first preimage finding attack on 16
rounds with a complexity 2193, and a second preimage finding attack on 16 rounds with a complexity
2193. These attacks are easily repeated in the case of Lesamnta-512. The best results on attacks on
Lesamnta-512 are a collision finding attack on 16 rounds witha complexity 2193, a first preimage
finding attack on 16 rounds with a complexity 2385, and a second preimage finding attack on 16
rounds with a complexity 2385.

In this section, we view the 256-bit internal state in Lesamnta-256 as four 64 bit words, instead
of eight 32-bit words, in order to make the analysis easier. Similarly, we view the 512-bit internal
state in Lesamnta-512 as four 128 bit words, instead of eight64-bit words. We denoteF256 and
F512 by F. Furthermore, we decomposeF asF = F̃◦ AddRoundKey. Note thatF̃ is a permutation.

Figure 37 and 38 illustrate another representation ofFM andF̃ permutation, respectively.

y0 y1 y2 y3

y′0 y′1 y′2 y′3

F

Round key

Figure 37: Another representation ofFM

AddRoundKey

FF̃ : Permutation

Figure 38:F̃ permutation

12.1 Length-Extension Attack

As an actual method for making the length-extension attack impossible, Lesamnta uses the
output function different from the compression function. Furthermore, Lesamnta is proved to
be indifferentiable from the random oracle in the ideal cipher model.Security against the
length-extension attack is a necessary condition to be indifferentiable from the random oracle.
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12.2 Multicollision Attack

Joux’s multicollision attack [17] can be applied to Lesamnta. It is easy to see that the complexity
to find 2t collisions of Lesamnta isO(t 2n/2) if the birthday attack is used to find collisions of its
compression function or output function.

12.3 Kelsey-Schneier Attack for Second-Preimage-Finding

The Kelsey-Schneier second-preimage attack [18] can be applied to Lesamnta. Against the attack,
it has second-preimage resistance of approximatelyn − k bits for any message shorter than 2k bits.

12.4 Randomized Hashing Mode

The randomized hashing mode in NIST SP 800-106 [12] can be applied to Lesamnta. However, the
more general mode called RMX [14] is suitable for iterated hash functions. The following function
rmx specifies a version of RMX optimized for Lesamnta: It maximizes the number of random bits
applied to the padded message.rmx takes two inputs: a messageM and a random saltr. For
simplicity, the length ofr is assumed to ben, the output length of Lesamnta.

1. Let t be the minimum non-negative integer such that|M| + t + 16≡ 0 (modn).

2. M̃ = M‖0t‖(16-bit binary representation oft)

3. R =

|M̃|/n︷     ︸︸     ︷
r‖r‖ · · · ‖r

4. rmx(M, r)
def
= r‖(M̃ ⊕ R)

The Kelsey-Schneier second-preimage attack can be appliedto Lesamnta withrmx. Thus, it
provides approximatelyn − k bits of security against the following attack:

The attacker chooses a messageM with 2k bits. Then, given randomr, the attacker
attempts to find a second messageM′ and a randomization valuer′ that yield the same
randomized hash value.

12.5 Attacks for Collision-Finding, First (Second)-Preimage-Finding

In this section, we present a collision and second preimage attack for 16 rounds of Lesamnta-256.
The analysis can easily be repeated for the case of 16 rounds of Lesamnta-512. This attack is based
on our preliminary analysis and the analysis of a previous version of Lesamnta by Florian Mendel.

First, we show how to construct collisions for the compression function. LetH = H0‖H1‖H2‖H3

denote the output of the compression function. Now assume that we can find 296 message blocks
m∗, such that all message blocks produce the same valueH3. Then we know that due to the birthday
paradox two of these message blocks also lead to the same valuesH0, H1, andH2. In other words,
we have constructed a collision for the compression function. Based on this short description, we
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will show now how to construct message blocksm∗, which all produce the same valueH3. We get
the following characteristic:

Table 15: Characteristic for the collision attack
Round Inputs (64-bit words)

message block ∆0 ∆1 ∆2 ∆3 ⊕ δ
0 ∆3 ∆0 ∆1 ∆2

1 − ∆3 ∆0 ∆1

2 − − ∆3 ∆0

3 − − − ∆3

4 ∆3 − − −
5 − ∆3 − −
6 − − ∆3 −
7 ? − − ∆3

8 ∆3 ? − −
9 − ∆3 ? −

10 ? − ∆3 ?
11 ? ? − ∆3

12 ∆3 ? ? −
13 ? ∆3 ? ?
14 ? ? ∆3 ?
15 ? ? ? ∆3

feedforward ? ? ? δ

where the symbol ? denotes an arbitrary difference. and∆ denotes a message block difference
The differences have to be selected such that they can be transformedby F̃−1 in the following way:

δ → ∆2

∆2 → ∆1

∆1 → ∆0

∆0 → ∆3.

It is easy to see that this characteristic for 16 rounds can beused to fix 64 bits of the output of the
compression function. It can be summarized as follows.

1. Choose a random message blockm = M0‖M1‖M2‖M3 and computeH = H0‖H1‖H2‖H3 and
check ifH3 = d for a predefined valued.

2. If H3 , d then adjustδ = H3 ⊕ d accordingly and compute

∆2 = M2 ⊕ (F̃−1(F̃(M2 ⊕ K(0)) ⊕ δ) ⊕ K(0)),

∆1 = M1 ⊕ (F̃−1(F̃(M1 ⊕ K(1)) ⊕ ∆2) ⊕ K(1)),

∆0 = M0 ⊕ (F̃−1(F̃(M0 ⊕ K(2)) ⊕ ∆1) ⊕ K(2)),

∆3 = (M3 ⊕ δ) ⊕ (F̃−1(F̃(M3 ⊕ K(3) ⊕ δ) ⊕ ∆0) ⊕ K(3)),

whereK(r)’s are round keys.

Document version 1.0, Date: 30 October 2008
65



The Hash Function Family: Lesamnta SHA-3 Proposal

3. Now we have to constructm∗ by adjustingm such thatH3 = d as follows:m∗ = M0⊕∆0‖M1⊕
∆1‖M2 ⊕ ∆2‖M3 ⊕ (∆3 ⊕ δ)

Hence, we can find a message blockm∗ such thatH3 = d for an arbitrary value ofd with a
complexity of about 2 compression function evaluations. Therefore, we can find a collision for the
compression function (and the hash function) with a complexity of about 297 compression function
evaluations.

In a similar way as we can construct a collision for the compression function, we can construct
a preimage for the compression function. In the attack, we have to find a messagem∗, such that
h(K,m∗) = H for the given value ofH andK. Since we can find a message blockm∗, whereH3 is
correct (note that the value ofd can be chosen freely) with a complexity of about 2 compression
function evaluations, we can construct a preimage for the compression function with a complexity
of 2193. By repeating the attack 2192 times we will find a message blockm∗ such thatH0, H1, and
H2 are correct.

Due to the final output transformation of the hash function wecan not extend the attack to a
preimage attack on the hash function. However we can use it toconstruct second preimages for the
hash function with a complexity of about 2193 compression function evaluations.

12.5.1 Collision Attacks Using the Message Modification

Wang et al. showed methods for finding collisions for widely used hash functions including MD5
and SHA-1. Their approach is based on the differential cryptanalysis and the message modification
technique. As for Lesamnta-256, the maximum differential characteristic probability for 12 rounds
is less than 2−256 and the message block space is a 256-bit space. Their methodsfor finding
collisions require a differential characteristic with a large probability and a large degree of freedom
in the message block space. Considering the limited size of the message block space and very small
maximum differential characteristic probability, it is very unlikely to apply their collision finding
methods to Lesamnta-256. The analysis can easily be repeated for the case of Lesamnta-512.

12.6 Attacks for Non-Randomness-Finding

Despite the fact that the most threatening attacks on hash functions at this moment are differential
attacks, we evaluate the security of Lesamnta with respect to various kinds of widely known attacks
on block ciphers. These include not only differential attacks, but also linear attacks, interpolation
attacks, and Square attacks.

The methods used to evaluate the compression function’s resistance against these attacks are
described below. In general, our analysis indicates that Lesamnta has large security margins against
all of these attacks.

The motivation to analyze the Lesamnta compression function with respect to attacks which do
not immediately apply to hash functions is that we want to ensure its security against future attacks
which might borrow techniques from the field of block cipher cryptanalysis. Another motivation is
that a number of block-cipher-based constructions, including the MMO mode, can be proved to be

Document version 1.0, Date: 30 October 2008
66



The Hash Function Family: Lesamnta SHA-3 Proposal

collision resistant if the underlying block cipher behavesas an ideal cipher (see [30, 7]). An ideal
cipher has the true-randomness property.

The best way to ensure this randomness is to apply block cipher analysis techniques to the core
function E, and to see if this reveals any weakness or non-random behavior. So far, we have not
found any weakness in the full block cipher.

12.6.1 Differential and Linear Attacks

Considering the fact that the most successful attacks on hash functions are of differential nature,
and that differential [5] and linear cryptanalysis [22] are two of the most powerful tools in block
cipher cryptanalysis, we examined resistance ofE andL against differential and linear attacks.

In order to estimate the strength ofE with respect to differential and linear attacks, we compute
upper bounds on the probabilities of differential and linear characteristics. As is commonly done
in block cipher cryptanalysis, we will make abstraction of the exact differences or masks used
in these characteristics, and just consider patterns of active S-boxes. Hereafter, we only explain
our method of evaluating the security against differential cryptanalysis as we can apply a similar
method regarding linear cryptanalysis because of its duality to differential cryptanalysis [8].

By applying the wide trail strategy, we can prove that the upper bounds on the probabilities
of differential characteristicsF256 andF512 are 2−54 and 2−150 respectively. On the other hand, it
is easy to prove that four consecutive rounds has at least oneactive F function. As a result, it
is provable that the probabilities of differential characteristics of 20 rounds of Lesamnta-256 and
Lesamnta-512 are upperbounded by 2−256 and 2−512. Furthermore, by making experiments with the
Viterbi algorithm, we observed that 12 rounds of Lesamnta-256 and Lesamnta-512 have at least
five activeF functions, which means that 12 rounds of them achieve the above bounds as well. As
a result, it is very unlikely to apply differential/linear attacks to the full Lesamnta.

12.6.2 Interpolation Attack

In the interpolation attack [16], an attacker constructs a polynomial using cipher input/output pairs
and then he aims to determine key-dependent coefficients a polynomial expression of a cipher. If
the number of terms in the polynomial expression is reasonably small, the interpolation attack can
be mounted.

Lesamnta-256 uses the AES S-box which can be expressed as a polynomial of degree 254 over
GF(28). Lesamnta uses a fixed characteristic polynomial to represent an element over GF(28). Our
analysis only considers polynomial expressions based on this characteristic polynomial.

A few rounds of Lesamnta-256 can be expressed as a polynomialwith 32 variables over GF(28).
We have confirmed that after the 10th round, an input to the F function depends on all the 32
variables. Then, due to high degree of the S-box, we expect that the number of coefficients reaches
the maximum some rounds after the 10th round. This analysis is easily repeated in the case of
Lesamnta-512. Thus we believe that the full 32 rounds Lesamnta is secure against interpolation
attacks.
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12.6.3 Square Attack

We analyze the resistance of Lesamnta against the Square attack [10]. (This attack is sometimes
referred to as theSaturation attack.) It is a chosen-plaintext attack with security requirements in
the case of block ciphers. An important characteristic of this attack is that it does not depend
on the specific structure of the functioñF. The only requirement for this analysis to be valid,
is that F̃ is an invertible transformation. This attack is based on ourpreliminary analysis and
analysis of a previous version of Lesamnta by Vincent Rijmen. We present the attack for the case
of Lesamnta-256. The analysis can easily be repeated for thecase of Lesamnta-512.

In Table 16 we present a characteristic over 19 rounds. Here we start with a set of 2192 blocks
such that the first 64 bits are constant and the remaining 192 bits take all values. We denote this by
using the symbolsb1, b2, b3. Herea denotes that the input takes all possible values over the set, −
denotes that the input is constant,s denotes that the sum of the values over the set equals−, and ‘?’
denotes that we cannot predict this input. Some explanationwith this characteristic is as follows:

Round 1: Consider only the last two lines of the input. This Feistel construction is invertible hence
we can write the symbolsb1, b2, b3 at the output. (Even if the values in the line marked by
‘b3’ have changed.)

Round 4: At the output of round 4, we have the property that the 192 bitsfrom the second, third
and fourth lines take all possible values. Also the 192 bits from the first, second and third
lines take all possible values. Note however that the valuesin the first and the fourth lines
have no special relation among one another. This will cause adeterioration of property in
round 8.

Round 16: The outputs is the sum of 3 balanced words.

Suppose now that we would be studying a block cipher. Then, anattacker can use this
characteristic to attack a 20-round version of the block ciphersE, L by guessing the last round
key, partially decrypting the ciphertexts and checking whether thes property would hold. This
would eliminate false guesses for the last round key.

The attacker would first construct 4 sets of 2192 texts with the right structure for the
characteristic. Then, for each guess of the roundkeys of thelast round (64 bits), the attacker would
partially decrypt and verify whether he obtains ans. For a wrong guess of the roundkeys, this will
happen with probability 2−64. Hence after verifying against the 4 sets, all wrong guesseswill have
been eliminated. For most of the roundkeys, only one check needs to be done. The complexity of
the attack can be roughly estimated as follows:

4×(264 roundkey guesses )×(2192 partial decryptions/guess )×( complexity of one partial decryption)

Estimating the complexity of one partial decryption at 1/20≈ 2−4.3 of a full decryption, we obtain
for the total complexity the figure of 2253.7 full decryptions.
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Table 16: Characteristic for the Square attack

Round Inputs
0 − b1 b2 b3

1 b3 − b1 b2

2 b2 b3 − b1

3 b1 b2 b3 −
4 b3 b1 b2 b3

5 b3 b3 b1 b2

6 b2 b3 b3 b1

7 b1 b2 b3 b3

8 s b1 b2 b3

9 b3 s b1 b2

10 b2 b3 s b1

11 ? b2 b3 s
12 s ? b2 b3

13 b3 s ? b2

14 ? b3 s ?
15 ? ? b3 s
16 s ? ? b3

17 ? s ? ?
18 ? ? s ?
19 ? ? ? s

12.6.4 Attacks Using the Known-Key Distinguisher

Recently, a new method for attacking block ciphers has been proposed [31]. This attack is a
distinguishing attack where the attacker knows the key. Therefore the distinguisher is called
known-key distinguisher. We examined the resistance of Lesamnta-256 against this kind of attack.
As a result, we can construct a known-key distinguisher for Lesamnta-256 reduced to 12 rounds.
The distinguisher computes two plaintexts denoted byp and p̃ which have a special property. Let
the corresponding ciphertexts be denoted byc = (z0, z1, z2, z3) and c = (z̃0, z̃1, z̃2, z̃3), then the
following equation will hold with probability 1.

z3 = z̃3.

Figure 39 shows the algorithm to compute the plaintextsp and p̃ satisfying the equation.
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Input :
The 12 subkeys K(0), ...,K(11), with K(2)

, K(0).

Algorithm :
1. Choose an arbitrary value for x.
2. Define the values γ, α as:

γ = K(2) ⊕ K(0)

α = F̃−1(F̃(x) ⊕ K(0) ⊕ K(8)) ⊕ x ⊕ K(1) ⊕ K(5)

3. Compute
p = (y0, y1, y2, y3)
p̃ = (y0, F̃−1(y2) ⊕ K(3), F̃(y1 ⊕ K(3)), y3)
,where y0 = K(2) ⊕ F̃−1(α)

It follows that y3 ⊕ z3 = F̃(y2 ⊕ F̃(y1 ⊕ K(3)) ⊕ K(8)) = ỹ3 ⊕ z̃3.

Consequently, z3 = z̃3.

Figure 39: Algorithm to compute the plaintextsp and p̃ satisfying the equation.

13 Extensions

13.1 Additional PRF Modes

13.1.1 Keyed-via-IV Mode

A PRF is obtained from Lesamnta by replacing the fixed initialvalue with a secret key. A diagram
of the function, Keyed-Lesamnta, is given in Figure 40.

The security of Keyed-Lesamnta is reduced to the security ofthe underlying block ciphers. It
resists any distinguishing attack that requires much fewerthan 2n/2 queries if the underlying block
ciphers are independent pseudorandom permutations. More precise statements and proofs are given
in Annex C.

E

M

K E E L

pad

Figure 40: Diagram of Keyed-Lesamnta.E andL are underlying (n, n) block ciphers.pad is the
padding algorithm.K is a secret key.M is a message input.
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13.1.2 Key-Prefix Mode

The key-prefix mode is a method to construct a PRF with a given hash function. It simply feeds
K‖M to the hash function as an input, whereK is a secret key andM is a message input. A diagram
of the mode with Lesamnta is given in Figure 41. We call the function Key-Prefix-Lesamnta. This
mode uses Lesamnta as a black box. In this sense, it is similarto HMAC. However, it is more
efficient than HMAC.

Key-Prefix-Lesamnta resists any distinguishing attack that requires much fewer than 2n/2

queries if the underlying block ciphers are independent pseudorandom permutations andEIV(K)
is pseudorandom. More precise statements and proofs are given in Annex C.

E

K‖M

IV E E L

pad

Figure 41: Diagram of Key-Prefix-Lesamnta.E andL are underlying (n, n) block ciphers.pad is
the padding algorithm.K is a secret key.M is a message input.

13.2 Enhancement Against Second-preimage Attacks

To resist against the security of second-preimage attacks,we extend Lesamnta in such a way that
round constants depend on not only the round indexround but also the message-block indexi. This
extended version of Lesamnta is called Lesamnta-OOOe, for example, Lesamnta-256e. Since the
compression function of this extended scheme depends on themessage-block indexi, this extended
scheme is similar to HAIFA [4] and dithering hash [33] in thisrespect.

13.2.1 Lesamnta-224e and Lesamnta-256e

Let C(i,round) be a 64-bit constant for theroundth round in theith message block. When the message
block M(i) is processed, the Key Expansion routineKeyExpComp256(), described in Sec. 5.3.2.6
usesC(i,round) instead ofC(round). Namely,KeyExpComp256() uses round constantsC(i,round) that
depend on both the message-block indexi and the round indexround, but do not depend on the
message block itself. Notice that the other functions are unchanged. The constantC(i,round) is given
by

C(i,round) = C(i,round)
0 || C(i,round)

1 ,

whereC(i,round)
0 andC(i,round)

1 are 32-bit constants. The 32-bit constantC(i,round)
0 is generated by the

linear feedback shift register of the following primitive polynomial [29]

c0(x) = x32 + x30 + x26 + x25 + 1,

Document version 1.0, Date: 30 October 2008
71



The Hash Function Family: Lesamnta SHA-3 Proposal

where the initial value is76543210 in hexadecimal. The 32-bit constantC(i,round)
1 is the

concatenation of a zero bit and a 31-bit sequence that is generated by the linear feedback shift
register of the following primitive polynomial

c1(x) = x31 + x28 + 1,

where the initial value is01234567 in hexadecimal. Notice that the most significant bit ofC(i,round)
1

is always zero. Figure 42 shows the pseudocode for computingC(i,round).

ConstantGenerator256(word C[N-1][Nr_comp256][2])
begin

word c0
word c1

c0 = 76543210 /* in hexadecimal */
c1 = 01234567 /* in hexadecimal */
for i = 1 to N-1

for round = 0 to Nr_comp256 - 1

word b0
word b1
/* >>: right shift, <<: left shift */
b0 = c0 ⊕ (c0>>2) ⊕ (c0>>6) ⊕ (c0>>7)
c0 = (c0 >> 1) ∨ (b0 << 31)

/* ∧: bitwise AND, 00000001 in hexadecimal */
b1 = (c1 ⊕ (c1>>3)) ∧ 00000001

c1 = (c1 >> 1) ∨ (b1 << 30)

C[i][round][0] = c0
C[i][round][1] = c1
C(i,round) is given by C[i][round][0]||C[i][round][1].

end for
end for

end

Figure 42: Pseudocode for computing 64-bit constants

When the message blockM(i) is processed, the Key Expansion routineKeyExpComp256()
usesC[i][round][0] andC[i][round][1] instead ofC[round][0] andC[round][1], respectively.

Some round constantsC(i,round) in hexadecimal are given below.

C(1,0) = bb2a19004091a2b3, C(1,1) = 5d950c806048d159,

C(1,2) = aeca8640302468ac, C(1,3) = d765432058123456,

· · ·
C(1,30) = 89e98c5a31072dcb, C(1,31) = c4f4c62d188396e5,

C(2,0) = 627a63164c41cb72, C(2,1) = b13d318b2620e5b9.

13.2.2 Lesamnta-384e and Lesamnta-512e

Let C(i,round) be a 128-bit constant for theroundth round in theith message block. When the message
block M(i) is processed, the Key Expansion routineKeyExpComp512() described in Sec. 5.5.2.6
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usesC(i,round) instead ofC(round). Notice that the other functions are unchanged. The constant
C(i,round) is given by

C(i,round) = C(i,round)
0 || C(i,round)

1 ,

whereC(i,round)
0 andC(i,round)

1 are 64-bit constants. The 64-bit constantC(i,round)
0 is generated with the

linear feedback shift register of the following primitive polynomial

c0(x) = x64 + x63 + x61 + x60 + 1,

where the initial value isfedcba9876543210 in hexadecimal. The 64-bit constantC(i,round)
1 is the

concatenation of a zero bit and a 63-bit sequence that is generated with the linear feedback shift
register of the following primitive polynomial

c1(x) = x63 + x62 + 1,

where the initial value is0123456789abcdef in hexadecimal. Notice that the most significant bit
of C(i,round)

1 is always zero. Figure 43 shows the pseudocode for computingC(i,round).

ConstantGenerator512(word C[N-1][Nr_comp512][2])
begin

word c0
word c1

c0 = fedcba9876543210 /* in hexadecimal */
c1 = 0123456789abcdef /* in hexadecimal */
for i = 1 to N-1

for round = 0 to Nr_comp512 - 1

word b0
word b1
/* >>: right shift, <<: left shift */
b0 = c0 ⊕ (c0>>1) ⊕ (c0>>3) ⊕ (c0>>4)
c0 = (c0 >> 1) ∨ (b0 << 63)

/* ∧: bitwise AND, 0000000000000001 in hexadecimal */
b1 = (c1 ⊕ (c1>>1)) ∧ 0000000000000001

c1 = (c1 >> 1) ∨ (b1 << 62)

C[i][round][0] = c0
C[i][round][1] = c1
C(i,round) is given by C[i][round][0]||C[i][round][1].

end for
end for

end

Figure 43: Pseudo code for computing 128-bit constants
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Some round constantsC(i,round) in hexadecimal are given below.

C(1,0) = ff6e5d4c3b2a19080091a2b3c4d5e6f7,

C(1,1) = ffb72ea61d950c840048d159e26af37b,

C(1,2) = 7fdb97530eca8642002468acf13579bd,

C(1,3) = bfedcba98765432140123456789abcde,

· · ·
C(1,30) = 89a3dcf7fdb975304d7e2b1802468acf,

C(1,31) = c4d1ee7bfedcba9826bf158c01234567,

C(2,0) = 6268f73dff6e5d4c135f8ac60091a2b3,

C(2,1) = b1347b9effb72ea609afc5630048d159.

13.2.3 Selection of Polynomials

This extension uses a sequence produced by two primitive polynomialsc0(x), c1(x). We chose
primitive polynomials consisting of as small terms as possible because such polynomials can be
implemented efficiently on hardware. Since there is no primitive trinomial with degree 32 and 64,
we chose primitive polynomials consisting of five terms. Since there are primitive trinomials with
degree 31 and 63, we chose them.

In the case of Lesamnta-256e, polynomialsc0(x), c1(x) produce sequences with period 232 − 1
and 231−1, respectively. Since GCD(232−1, 231−1) = 1 and Lesamnta-256e accepts a (264−1)-bit
message at most,C(i,round) = C(i′,round′) if and only if i = i′ andround = round′ where 1≤ i, i′ ≤ N−1
and 0≤ round, round′ < Nr comp256. It follows that the block cipherEncComp256 depends on the
message-block indexi. Similarly, the block cipherEncComp512 of Lesamnta-512e depends on the
message-block indexi because GCD(264−1, 263−1) = 1 and Lesamnta-512e accepts a (2128−1)-bit
message at most.

14 Advantages and Limitations

14.1 Advantages

Flexibility

• The number of the rounds of the underlying block ciphers is a tunable parameter. It allows
the selection of a range of possible security/performance tradeoffs.

• Lesamnta can be implemented securely and efficiently on a wide variety of platforms,
including constrained environments, such as smart cards.
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Simplicity

• We take a rather conservative and simple approach to design Lesamnta. It is a
Merkle-Damgård iterated hash function of a compression function enveloped by an output
function. Furthermore, both the compression function and the output function are MMO
modes using distinct block ciphers.

• The underlying block ciphers do not base its security or partof it on obscure and not well
understood interactions between arithmetic operations.

• The tight design of Lesamnta does not leave enough room to hide a trapdoor.

Hardware Design Scalability

• Lesamnta is suited to be implemented in dedicated hardware.Hardware architectures of
Lesamnta can be designed to meet the high-speed processing demand because of its highly
parallelizable structure.

• The type-1 general Feistel network used in Lesamnta allows to process threeF functions in
parallel without additional delay. As for designing size-optimized architectures, Lesamnta
has a nice feature that theF function is parallel and it consists of four iterations of the same
function. The gate count of the Lesamnta hardware can be reduced by using a shared function
module.

14.2 Limitations

• The design of the Lesamnta domain extension is performance-oriented, and it makes only
a small change to the Merkle-Damgård iteration. It does not increase the resistance against
Joux’s multicollision attack and the Kelsey-Schneier second-preimage attack in comparison
with the SHA-2 family.

15 Applications of Hash Functions

Lesamnta has the same application program interface as the SHA-2 family. Therefore, Lesamnta
supports all applications that are supported by the SHA-2 family such as:

• digital signatures (FIPS 186-2);

• key derivation (NIST Special Publication 800-56A);

• hash-based message authentication codes (FIPS 198); and

• deterministic random bit generators (SP 800-90).

The proof-based and attack-based security analyses show that the security provided by Lesamnta
against known attacks is not less than that provided by the SHA-2 family.
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18 List of Annexes

A HMAC Using Lesamnta Is a PRF

A.1 Definitions

Let Func(D,R) be the set of all functions fromD to R, andPerm(D) be the set of all permutations on

D. Let s
$← S represent that an elements is selected from the setS under the uniform distribution.

Pseudorandom Bit Generator Let µ be a function such thatµ : {0, 1}n → {0, 1}l, where
n < l. Let A be a probabilistic algorithm which outputs 0 or 1 for a given input in {0, 1}l. The
prbg-advantage ofA againstµ is defined as follows:

Advprbg
µ (A) =

∣∣∣∣∣Pr[A(µ(k)) = 1 | k $← {0, 1}n] − Pr[A(s) = 1 | s $← {0, 1}l]
∣∣∣∣∣ ,

where the probabilities are taken over the coin tosses byA and the uniform distributions on{0, 1}n
and {0, 1}l. µ is called a pseudorandom bit generator (PRBG) if Advprbg

µ (A) is negligible for any
efficientA.

Pseudorandom Function Let f : K × D → R be a keyed function or a function family.f (k, ·)
is often denoted byfk(·). Let A be a probabilistic algorithm which has oracle access to a function
from D to R. A first asks elements inD and obtains the corresponding elements inR with respect
to the function, and then outputs 0 or 1. The prf-advantage ofA againstf is defined as follows:

Advprf
f (A) =

∣∣∣∣∣Pr[A fk = 1 | k $← K] − Pr[Aρ = 1 | ρ $← Func(D,R)]
∣∣∣∣∣ ,

where the probabilities are taken over the coin tosses byA and the uniform distributions onK and
Func(D,R). f is called a pseudorandom function (PRF) if Advprf

f (A) is negligible for any efficient
A.

Let p : K × D → D be a keyed permutation or a permutation family. The prp-advantage ofA
againstp is defined similarly:

Advprp
p (A) =

∣∣∣∣∣Pr[Apk = 1 | k $← K] − Pr[Aρ = 1 | ρ $← Perm(D)]
∣∣∣∣∣ .

p is called a pseudorandom permutation (PRP) if Advprp
p (A) is negligible for any efficientA.

Pseudorandom Function Pair Let A be a probabilistic algorithm which has oracle access to
a pair of functions fromD to R. The prf-pair-advantage (prfp-advantage) ofA against a pair of
functions (f , g) is given by

Advprfp
f ,g (A) =

∣∣∣∣∣Pr[A fk ,gk = 1 | k $← K] − Pr[Aρ,ρ
′
= 1 | ρ, ρ′ $← Func(D,R)]

∣∣∣∣∣ ,

Document version 1.0, Date: 30 October 2008
80



The Hash Function Family: Lesamnta SHA-3 Proposal

where the probabilities are taken over the coin tosses byA and the uniform distributions onK and
Func(D,R). ( f , g) is called a PRF pair if Advprfp

f ,g (A) is negligible for any efficientA.
For a pair of permutations, the prpp-advantage of an adversary and a PRP pair can also be

defined similarly.

Computationally Almost Universal Function Family Computationally almost universal
function families are formalized by Bellare in [1]. Letf : K × D → R be a function family.
Let A be a probabilistic algorithm which takes no inputs and produces a pair of elements inD. The
au-advantage ofA againstf is defined as follows:

Advau
f (A) = Pr[ fk(M1) = fk(M2) ∧ M1 , M2 | (M1,M2)← A ∧ k

$← K] ,

where the probabilities are taken over the coin tosses byA and the uniform distribution onK. f is
called a computationally almost universal function familyif Advau

f (A) is negligible for any efficient
A.

A.2 Analysis

In the analysis of this section, for HMAC using Lesamnta, it is assumed that the length of an input
M is a multiple ofn and that the padding is not applied toK‖M. We call this slightly generalized
functionHMAC[E, L, IV]. The proof technique given by Bellare in [1] is used in the analysis.

First, the compression function construction is considered. The following lemma says that the
MMO compression function is a PRF up to the birthday bound when keyed via the chaining variable
if the underlying block cipher is a PRP under the chosen plaintext attack. The proof is easy and
omitted.

Lemma 1 Let E be an (n, n) block cipher andh be a function such thathK(x) = EK(x) ⊕ x. Let Ah

be a prf-adversary againsth which runs in time at mostt and asks at mostq queries. Then, there
exists a prp-adversaryAE againstE such that

Advprf
h (Ah) ≤ Advprp

E (AE) +
q(q − 1)

2n+1
,

whereAE runs in time at mostt + O(q) and asks at mostq queries.

The following lemma says that the pair of the MMO compressionfunction and the MMO output
function is a PRF pair up to the birthday bound if the pair of the underlying block ciphers is a PRP
pair under the chosen plaintext attack. The proof is easy andomitted.

Lemma 2 Let E andL be (n, n) block ciphers. Leth andg be functions such thathK(x) = EK(x)⊕ x
andgK(x) = LK(x) ⊕ x, respectively. LetAh,g be a prfp-adversary against (h, g) which runs in time
at mostt and asks at mostq queries. Then, there exists a prpp-adversaryAE,L against (E, L) such
that

Advprfp
h,g (Ah,g) ≤ Advprpp

E,L (AE,L) +
q(q − 1)

2n+1
,
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whereAE,L runs in time at mostt + O(q) and asks at mostq queries.

LetB = {0, 1}n andB+ = ⋃
i=1Bi. For the compression functionh and the output functiong, let

gh∗ : B × B+ → B be a function family such thatgh∗(K,M) is defined forK ∈ B andM ∈ B+ as
follows: Let M = M(1)‖ · · · ‖M(N) andM(i) ∈ {0, 1}n for 1 ≤ i ≤ N. Then,

1. a(0) = K,

2. if N ≥ 2, thena(i) = h(a(i−1),M(i)) for 1 ≤ i ≤ N − 1,

3. gh∗(K,M) = g(a(N−1),M(N)).

The following lemma is on the inner hashing. It says that, if (h, g) is a PRF pair, thengh∗ is
computationally almost universal. The proof is given in A.2.1.

Lemma 3 Let h : {0, 1}κ × B → {0, 1}κ andg : {0, 1}κ × B → {0, 1}κ be function families, and let
Agh∗ be an au-adversary againstgh∗. Suppose thatAgh∗ outputs two messages with at mostℓ1 andℓ2
blocks, respectively. Then, there exists a prfp-adversaryAh,g against (h, g) such that

Advau
gh∗(Agh∗) ≤ (ℓ1 + ℓ2 − 1) Advprfp

h,g (Ah,g) +
1
2κ
,

whereAh,g runs in time at mostO((ℓ1+ℓ2)Th+Tg) and makes at most 2 queries.Th andTg represent
the time required to computeh andg, respectively.

Lemma 3 requires a PRF pair (h, g). However, it does not seem severe since adversaries are allowed
to make only at most 2 queries to the oracles.

The following lemma is on the outer hashing. It says that, if the compression function and
the output function are PRFs, then the outer-hashing function is also a PRF. The proof is easy and
omitted.

Lemma 4 Let h : {0, 1}κ × B → {0, 1}κ andg : {0, 1}κ × B → {0, 1}κ be function families. Let
gh : {0, 1}κ × B → {0, 1}κ be a function family defined by

gh(K, X) = g(h(K, X), 1‖bin(κ + n)) ,

whereK ∈ {0, 1}κ, X ∈ B andbin(κ + n) is the (n − 1)-bit binary representation ofκ + n. Let Agh be
a prf-adversary againstgh that runs in time at mostt and makes at mostq queries. Then, there exist
prf-adversariesAh andAg againsth andg, respectively, such that

Advprf
gh (Agh) ≤ Advprf

h (Ah) + q Advprf
g (Ag) ,

whereAh runs in time at mostt+O(q Tg) and makes at mostq queries, andAg runs in timet+O(q Tg)
and makes at most 1 query.

The following lemma is Lemma 3.2 in [1]. It says thatf (Ko,G(Ki, ·)) is a PRF if f (Ko, ·) is
a PRF andG(Ki, ·) is computationally almost universal, whereKo andKi are secret keys chosen
uniformly and independently of each other.
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Lemma 5 (Lemma 3.2 in [1]) Let f : {0, 1}τ × B → {0, 1}τ andG : {0, 1}κ × D → B be function
families. Let f G : {0, 1}τ+κ × D → {0, 1}τ be defined byf G(Ko‖Ki,M) = f (Ko,G(Ki,M)) for
Ko ∈ {0, 1}τ, Ki ∈ {0, 1}κ andM ∈ D. Let A fG be a prf-adversary againstf G that runs in time at
mostt and makes at mostq (≥ 2) queries each of whose lengths is at mostd bits. Then, there exist
a prf-adversaryA f againstf and an au-adversaryAG againstG such that

Advprf
fG(A fG) ≤ Advprf

f (A f ) +
q(q − 1)

2
Advau

G (AG) ,

whereA f runs in time at mostt and makes at mostq queries, andAG runs in timeO(TG(d)) and the
two messages it outputs have length at mostd. TG(d) is the time to computeG on ad-bit input.

The following theorem is on the pseudorandomness of the NMAC-like function made from
HMAC[E, L, IV](K, ·) by replacing the first calls of the compression function in inner and outer
hashing with two secret keys chosen uniformly and independently of each other. The theorem
states that the security of the function as a PRF is reduced tothe security of the underlying block
ciphers as a PRP pair. It directly follows from Lemmas 1 through 5.

Theorem 1 Let E andL be (n, n) block ciphers. Leth : B × B → B andg : B × B → B be
functions such thathK(x) = EK(x) ⊕ x andgK(x) = LK(x) ⊕ x. Let ghgh∗ : B2 × B+ → B be
defined byghgh∗(Ko‖Ki,M) = gh(Ko, gh∗(Ki,M)) for Ko,Ki ∈ B and M ∈ B+. Let Aghgh∗ be a
prf-adversary againstghgh∗ that runs in time at mostt and makes at mostq (≥ 2) queries each of
which has at mostℓ blocks. Then, there exist prp-adversariesAE andAL againstE andL, and a
prpp-adversaryAE,L against (E, L) such that

Advprf
ghgh∗(Aghgh∗) ≤ Advprp

E (AE) + q Advprp
E (AL) + ℓ q2Advprpp

E,L (AE,L) +
(ℓ + 1)q2

2n
,

whereAE runs in time at mostt + O(q TL) and makes at mostq queries,AL runs in time at most
t + O(q TL) and makes at most 1 query, andAE,L runs in timeO(ℓ TE + TL) and makes at most 2
queries.

The following lemma says that, even if the secret key of a PRF is replaced by the output of a
PRBG, the resulting function remains a PRF. The proof is easyand omitted.

Lemma 6 Let µ : {0, 1}κ → {0, 1}κ′ be a function andF : {0, 1}κ′ × D → B be a function family.
Let Fµ : {0, 1}κ × D → B be a function family defined byFµ(K,M) = F(µ(K),M) for K ∈ {0, 1}κ
andM ∈ D. Let AFµ be a prf-adversary againstFµ that runs in time at mostt and makes at mostq
queries of length at mostd bits. Then, there exist a prbg-adversaryAµ againstµ and a prf-adversary
AF againstF such that

Advprf
Fµ(AFµ) ≤ Advprbg

µ (Aµ) + Advprf
F (AF) ,

whereAµ runs in time at mostt + O(q TF(d)), andAF runs in timet and makes at mostq queries of
length at mostd bits.
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Now, we can obtain the result on the pseudorandomness ofHMAC[E, L, IV] simply by
combining Theorem 1 and Lemma 6.

Corollary 1 Let E be an (n, n) block cipher. LetµE : B → B2 be a function such thatµE(K) =
(EIV(Kop) ⊕ Kop)‖(EIV(Kip) ⊕ Kip) , whereKop = K ⊕ opad and Kip = K ⊕ ipad. Let A be a
prf-adversary againstHMAC[E, L, IV] that runs in time at mostt and makes at mostq (≥ 2) queries
each of which has at mostℓ blocks. Then, there exist prp-adversariesAE andAL againstE andL, a
prpp-adversaryAE,L against (E, L) and a prbg-adversaryAµE such that

Advprf
HMAC[E,L,IV](A) ≤ Advprbg

µE
(AµE )+Advprp

E (AE)+q Advprp
L (AL)+ℓ q2Advprpp

E,L (AE,L)+
(ℓ + 1)q2

2n
,

whereAµE runs in time at mostt+O(q ℓ TE), AE runs in time at mostt+O(q TL) and makes at most
q queries,AL runs in time at mostt + O(q TL) and makes at most 1 query, andAE,L runs in time
O(ℓ TE + TL) and makes at most 2 queries.

A.2.1 Proof of Lemma 3

For M ∈ B+, let |M|n = |M|/n. ForM1,M2 ∈ B+, let LCP(M1,M2) = ⌊|M⋆|/n⌋, whereM⋆ represents
the longest common prefix ofM1 andM2.

In the following, letM1 and M2 be distinct elements inB+. Let m1 = |M1|n andm2 = |M2|n.
Without loss of generality, we can assume thatm1 ≤ m2. Let p = min{LCP(M1,M2),m1 − 1}.

This proof uses the gameG and the adversaryA given in Figure 44.

Claim 1 Suppose that 1≤ l ≤ m1 + m2 − p − 1. Then,

Pr[Aρ,ρ
′
(M1,M2, l) = 1 | ρ, ρ′ $← Func(B, {0, 1}κ)] = Pr[G(M1,M2, l) = 1]

Pr[AhK ,gK (M1,M2, l) = 1 |K $← {0, 1}κ] = Pr[G(M1,M2, l − 1) = 1] .

Proof. It is first shown thatAρ,ρ
′
(M1,M2, l) is equivalent toG(M1,M2, l).

If l ≤ p (≤ m1 − 1), then, inAρ,ρ
′
, a1[l] ← ρ(M1[l]) and a2[l] ← a1[l]. a1[l] ← ρ(M1[l]) is

equivalent toa1[l]
$← {0, 1}κ sinceρ is random.

If l = p + 1, thenp + 1 ≤ m1 and

a1[p + 1]←
{
ρ(M1[p + 1]) if p + 1 ≤ m1 − 1
ρ′(M1[p + 1]) if p + 1 = m1

a2[p + 1]←
{
ρ(M2[p + 1]) if p + 1 ≤ m2 − 1
ρ′(M2[p + 1]) if p + 1 = m2 .

If p + 1 ≤ m1 − 1, thenp + 1 ≤ m2 − 1 andp = LCP(M1,M2). Thus,a1[p + 1] ← ρ(M1[p + 1]),
a2[p + 1] ← ρ(M2[p + 1]), and M1[p + 1] , M2[p + 1]. If p + 1 = m1 and p + 1 ≤ m2 − 1,
thena1[p + 1] ← ρ′(M1[p + 1]) anda2[p + 1] ← ρ(M2[p + 1]). If p + 1 = m1 and p + 1 = m2,
then m1 = m2 and p = LCP(M1,M2). Otherwise, LCP(M1,M2) = m1 = m2, and M1 = M2,
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which causes a contradiction. Thus,a1[p + 1] ← ρ′(M1[p + 1]), a2[p + 1] ← ρ′(M2[p + 1]), and
M1[p+ 1] , M2[p+ 1]. In any case,a1[p+ 1] anda2[p+ 1] are selected from{0, 1}κ uniformly and
independently of each other.

If p + 2 ≤ l ≤ m1, thena1[l] ← ρ(M1[l]) or ρ′(M1[l]), anda2[p + 1]
$← {0, 1}κ. Thus,a1[l] and

a2[p + 1] are selected from{0, 1}κ uniformly and independently of each other.

If l ≥ m1+1, thena1[m1]
$← {0, 1}κ, anda2[k] ← ρ(M2[k]) or ρ′(M2[k]). Thus,a1[m1] anda2[k]

are selected from{0, 1}κ uniformly and independently of each other.
It is concluded from these observations that the first equation of the claim holds.
It is shown below that the second equation holds. The proof uses the game transformations.
G1(M1,M2, l) given in Figure 45 is obtained simply by substitutingl − 1 to l of G(M1,M2, l).

Thus, Pr[G(M1,M2, l − 1) = 1] = Pr[G1(M1,M2, l) = 1].
The equivalence betweenG1 andG2 given in Figure 45 is confirmed as follows. It is easy to

see that the lines 506 through 509 are equivalent to the lines608 and 609. Forp + 2 ≤ l ≤ m1, the
lines 513 through 521 are equivalent to the lines 619 through621. If l = m1 + 1, thenk ← p + 1
in G2. Thus, the lines 519 through 524 are equivalent to the lines 622 through 624 form1 + 1 ≤
l ≤ m1 + m2 − p − 1. The other parts ofG2 are copied fromG1. Thus, Pr[G1(M1,M2, l) = 1] =
Pr[G2(M1,M2, l) = 1].

The equivalence betweenG2 andG3 given in Figure 46 is shown below. InG3, K in the lines
702 and 724 is sampled from{0, 1}κ under the uniform distribution at the line 699. Notice that
K is used either in 702 or in 724 exclusively. It is easy to see that the lines 610 through 612
are equivalent to the lines 710 through 715. The other parts of G3 are copied fromG2. Thus,
Pr[G2(M1,M2, l) = 1] = Pr[G3(M1,M2, l) = 1].

The equivalence betweenG3 and AhK ,gK given in Figure 46 is shown below. The lines 701
through 705 are equivalent to the lines 801 through 807. For 1≤ l ≤ p (≤ m1 − 1), a2[l − 1] ←
a1[l − 1] = K at 712 inG3, while a2[l] ← a1[l] = h(K,M1[l]) at 812 inAhK ,gK . The evaluation
of a2[l] is delayed until the line 729 inG3. If l = p + 1, then the evaluation ofa2[l] is delayed
until the line 729 or 730 inG3. Similarly, if m1 + 1 ≤ l ≤ m1 + m2 − p − 1, then the evaluation
of a2[l − m1 + p + 1] is delayed until the line 729 or 730 inG3. Thus, Pr[G3(M1,M2, l) = 1] =

Pr[AhK ,gK (M1,M2, l) = 1 |K $← {0, 1}κ].
From these observations, it is concluded that the second equation of the claim holds. �

Let Pcol
gh∗(M1,M2) = Pr[gh∗(K,M1) = gh∗(K,M2) |K

$← {0, 1}κ].

Claim 2 Let m = m1 + m2 − p − 1. Then,

Pr[G(M1,M2,m) = 1] =
1
2κ

Pr[G(M1,M2, 0) = 1] = Pcol
gh∗(M1,M2) .

Proof. If G is run with the argument (M1,M2,m), thena1[m1] is chosen from{0, 1}κ uniformly at
random. Thus, Pr[G(M1,M2,m) = 1] = 1/2κ.
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On the other hand, suppose thatG is run with the argument (M1,M2, 0). Then,a1[m1] =

gh∗(a1[0],M1), a2[m2] = gh∗(a2[0],M2), anda2[0] = a1[0]
$← {0, 1}κ. Thus, Pr[G(M1,M2, 0) =

1] = Pcol
gh∗(M1,M2). �

Let A1 be a prfp-adversary against (h, g) such that, for givenM1,M2,

1. it first selectsl from {1, 2, . . . ,m1 + m2 − p − 1} uniformly at random, and

2. invokesAu,v with (M1,M2, l), and outputsAu,v(M1,M2, l).

Claim 3 Let m = m1 + m2 − p − 1. Then,

Advprfp
h,g (A1) =

1
m

∣∣∣∣∣P
col
gh∗(M1,M2) −

1
2κ

∣∣∣∣∣ .

Proof. From the definition,

Advprfp
h,g (A1) =

∣∣∣∣∣Pr[AhK ,gK

1 = 1 |K $← {0, 1}κ] − Pr[Aρ,ρ
′

1 = 1 | ρ, ρ′ $← Func(B, {0, 1}κ)]
∣∣∣∣∣ .

On the other hand,

Pr[AhK ,gK

1 = 1 |K $← {0, 1}κ] =
m∑

i=1

Pr[l = i ∧ AhK ,gK

1 = 1 |K $← {0, 1}κ]

=
1
m

m∑

i=1

Pr[AhK ,gK (M1,M2, i) = 1 |K $← {0, 1}κ]

=
1
m

m∑

i=1

Pr[G(M1,M2, i − 1) = 1] .

Similarly,

Pr[Aρ,ρ
′

1 = 1 | ρ, ρ′ $← Func(B, {0, 1}κ)] = 1
m

m∑

i=1

Pr[G(M1,M2, i) = 1] .

Thus,

Advprfp
h,g (A1) =

∣∣∣∣∣
1
m

Pr[G(M1,M2, 0) = 1] − 1
m

Pr[G(M1,M2,m) = 1]
∣∣∣∣∣

=
1
m

∣∣∣∣∣P
col
gh∗(M1,M2) −

1
2κ

∣∣∣∣∣ .

�

Let A2 be a prfp-adversary against (h, g) such that

1. M1,M2← Agh∗ ,

2. invokesAu,v
1 with (M1,M2), and outputsAu,v

1 (M1,M2).
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Claim 4

Advau
gh∗(Agh∗) ≤ (ℓ1 + ℓ2 − 1)Advprfp

h,g (A2) +
1
2κ
.

Proof. Notice that

Advau
gh∗(Agh∗) =

∑

M1,M2

Pcol
gh∗(M1,M2) PAgh∗ (M1,M2) ,

wherePAgh∗ (M1,M2) is the probability thatAgh∗ outputsM1, M2. From the previous claim,

Advau
gh∗(Agh∗) =

∑

M1,M2

Pcol
gh∗(M1,M2) PAgh∗ (M1,M2)

≤
∑

M1,M2

(
(ℓ1 + ℓ2 − 1)Advprfp

h,g (A1) +
1
2κ

)
PAgh∗ (M1,M2)

= (ℓ1 + ℓ2 − 1)Advprfp
h,g (A2) +

1
2κ
.

�

The time complexity ofA2 depends on that ofAgh∗ . Notice that there exist somẽM1, M̃2 ∈ B+
such that Advprfp

h,g (A2) ≤ Advprfp
h,g (A1(M̃1, M̃2)). Let Ah,g be the prf-adversary that has̃M1, M̃2 as a

part of its code and runsAu,v
1 (M̃1, M̃2). Then,

Advau
gh∗(Agh∗) ≤ (ℓ1 + ℓ2 − 1)Advprfp

h,g (Ah,g) +
1
2κ
.

Ah,g runs in timeO((ℓ1 + ℓ2)Th + Tg) and makes at most 2 queries.

B Indifferentiability from Random Oracle

B.1 Definitions

B.1.1 Indifferentiability

The notion of indifferentiability is introduced by Maurer et al. [23] as a generalized notion of
indistinguishability. Then, it is tailored to security analysis of hash functions by Coron et al. [9].

Let C be an algorithm with oracle access to ideal primitivesF1, . . . ,Fd. In the setting of this
document,C is an algorithm to construct a hash function usingF1, . . . ,Fd with fixed input length
(FIL). LetH be the variable-input-length (VIL) random oracle andS 1, . . . , S d be simulators which
have oracle access toH . SH1 , . . . , S

H
d try to behave likeF1, . . . ,Fd in order to convince an adversary

thatH is CF1,...,Fd . Let A be an adversary with access to oracles. The indiff-advantage ofA against
C with respect toS 1, . . . , S d is given by

Advindiff
C,S 1,...,S d

(A) =
∣∣∣∣Pr[ACF1,...,Fd ,F1,...,Fd = 1] − Pr[AH ,S

H
1 ,...,S

H
d = 1]

∣∣∣∣ ,

where the probabilities are taken over the coin tosses byA, C andS 1, . . . , S d and the distributions
of ideal primitives.CF1,...,Fd is said to be indifferentiable fromH if there exist efficient simulators
SH1 , . . . , S

H
d such that Advindiff

C,S 1,...,S d
(A) is negligible for any efficientA.
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GameG(M1,M2, l):

100: p← min{LCP(M1,M2),m1 − 1}
101: if 0 ≤ l ≤ m1 − 1 then
102: a1[l]

$← {0, 1}κ
103: for i = l + 1 to m1 − 1 do
104: a1[i] ← h(a1[i − 1],M1[i])

105: a1[m1] ← g(a1[m1 − 1],M1[m1])

106: if l = m1 then
107: a1[l]

$← {0, 1}κ
108: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then

109: a1[m1]
$← {0, 1}κ

110: if 0 ≤ l ≤ p then
111: k ← l
112: a2[k] ← a1[k]

113: if l = p + 1 then
114: k ← p + 1

115: a2[k]
$← {0, 1}κ

116:
117:
118:
119: if p + 2 ≤ l ≤ m1 then
120: k ← p + 1

121: a2[k]
$← {0, 1}κ

122: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then
123: k ← l − m1 + p + 1

124: a2[k]
$← {0, 1}κ

125:
126:
127:
128: for i = k + 1 to m2 − 1 do
129: a2[i] ← h(a2[i − 1],M2[i])

130: a2[m2] ← g(a2[m2 − 1],M2[m2])
131: if a1[m1] = a2[m2] then
132: return 1
133: else
134: return 0

AdversaryAu,v(M1,M2, l):

200: p← min{LCP(M1,M2),m1 − 1}
201: if 1 ≤ l ≤ m1 − 1 then
202: a1[l] ← u(M1[l])
203: for i = l + 1 to m1 − 1 do
204: a1[i] ← h(a1[i − 1],M1[i])

205: a1[m1] ← g(a1[m1 − 1],M1[m1])

206: if l = m1 then
207: a1[l] ← v(M1[l])

208: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then

209: a1[m1]
$← {0, 1}κ

210: if 1 ≤ l ≤ p then
211: k ← l
212: a2[k] ← a1[k]

213: if l = p + 1 then
214: k ← p + 1
215: if m2 = k then
216: a2[k] ← v(M2[k])
217: else
218: a2[k] ← u(M2[k])

219: if p + 2 ≤ l ≤ m1 then
220: k ← p + 1

221: a2[k]
$← {0, 1}κ

222: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then
223: k ← l − m1 + p + 1
224: if m2 = k then
225: a2[k] ← v(M2[k])
226: else
227: a2[k] ← u(M2[k])

228: for i = k + 1 to m2 − 1 do
229: a2[i] ← h(a2[i − 1],M2[i])

230: a2[m2] ← g(a2[m2 − 1],M2[m2])
231: if a1[m1] = a2[m2] then
232: return 1
233: else
234: return 0

Figure 44: Pseudocodes for the game and the adversary.
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GameG1(M1,M2, l):

500: p← min{LCP(M1,M2),m1 − 1}
501: if 1 ≤ l ≤ m1 then
502: a1[l − 1]

$← {0, 1}κ
503: for i = l to m1 − 1 do
504: a1[i] ← h(a1[i − 1],M1[i])

505: a1[m1] ← g(a1[m1 − 1],M1[m1])

506: if l = m1 + 1 then
507: a1[m1]

$← {0, 1}κ
508: if m1 + 2 ≤ l ≤ m1 + m2 − p − 1 then

509: a1[m1]
$← {0, 1}κ

510: if 1 ≤ l ≤ p + 1 then
511: k ← l − 1
512: a2[k] ← a1[k]

513: if l = p + 2 then
514: k ← p + 1

515: a2[k]
$← {0, 1}κ

516:
517:
518:
519: if p + 3 ≤ l ≤ m1 + 1 then
520: k ← p + 1

521: a2[k]
$← {0, 1}κ

522: if m1 + 2 ≤ l ≤ m1 + m2 − p − 1 then
523: k ← l − m1 + p

524: a2[k]
$← {0, 1}κ

525:
526:
527:
528: for i = k + 1 to m2 − 1 do
529: a2[i] ← h(a2[i − 1],M2[i])

530: a2[m2] ← g(a2[m2 − 1],M2[m2])
531: if a1[m1] = a2[m2] then
532: return 1
533: else
534: return 0

GameG2(M1,M2, l):

600: p← min{LCP(M1,M2),m1 − 1}
601: if 1 ≤ l ≤ m1 then
602: a1[l − 1]

$← {0, 1}κ
603: for i = l to m1 − 1 do
604: a1[i] ← h(a1[i − 1],M1[i])

605: a1[m1] ← g(a1[m1 − 1],M1[m1])

606:
607:
608: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then

609: a1[m1]
$← {0, 1}κ

610: if 1 ≤ l ≤ p + 1 then
611: k ← l − 1
612: a2[k] ← a1[k]

613:
614:
615:
616:
617:
618:
619: if p + 2 ≤ l ≤ m1 then
620: k ← p + 1

621: a2[k]
$← {0, 1}κ

622: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then
623: k ← l − m1 + p

624: a2[k]
$← {0, 1}κ

625:
626:
627:
628: for i = k + 1 to m2 − 1 do
629: a2[i] ← h(a2[i − 1],M2[i])

630: a2[m2] ← g(a2[m2 − 1],M2[m2])
631: if a1[m1] = a2[m2] then
632: return 1
633: else
634: return 0

Figure 45: Pseudocodes for the gamesG1 andG2.
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GameG3(M1,M2, l):

699: K
$← {0, 1}κ

700: p← min{LCP(M1,M2),m1 − 1}
701: if 1 ≤ l ≤ m1 then
702: a1[l − 1]← K
703: for i = l to m1 − 1 do
704: a1[i] ← h(a1[i − 1],M1[i])

705: a1[m1] ← g(a1[m1 − 1],M1[m1])

706:
707:
708: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then

709: a1[m1]
$← {0, 1}κ

710: if 1 ≤ l ≤ p then
711: k ← l − 1
712: a2[k] ← a1[k]

713: if l = p + 1 then
714: k ← p
715: a2[k] ← a1[k]

716:
717:
718:
719: if p + 2 ≤ l ≤ m1 then
720: k ← p + 1

721: a2[k]
$← {0, 1}κ

722: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then
723: k ← l − m1 + p
724: a2[k] ← K
725:
726:
727:
728: for i = k + 1 to m2 − 1 do
729: a2[i] ← h(a2[i − 1],M2[i])

730: a2[m2] ← g(a2[m2 − 1],M2[m2])
731: if a1[m1] = a2[m2] then
732: return 1
733: else
734: return 0

AdversaryAhK ,gK (M1,M2, l):

800: p← min{LCP(M1,M2),m1 − 1}
801: if 1 ≤ l ≤ m1 − 1 then
802: a1[l] ← h(K,M1[l])
803: for i = l + 1 to m1 − 1 do
804: a1[i] ← h(a1[i − 1],M1[i])

805: a1[m1] ← g(a1[m1 − 1],M1[m1])

806: if l = m1 then
807: a1[l] ← g(K,M1[l])

808: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then

809: a1[m1]
$← {0, 1}κ

810: if 1 ≤ l ≤ p then
811: k ← l
812: a2[k] ← a1[k]

813: if l = p + 1 then
814: k ← p + 1
815: if m2 = k then
816: a2[k] ← g(K,M2[k])
817: else
818: a2[k] ← h(K,M2[k])

819: if p + 2 ≤ l ≤ m1 then
820: k ← p + 1

821: a2[k]
$← {0, 1}κ

822: if m1 + 1 ≤ l ≤ m1 + m2 − p − 1 then
823: k ← l − m1 + p + 1
824: if m2 = k then
825: a2[k] ← g(K,M2[k])
826: else
827: a2[k] ← h(K,M2[k])

828: for i = k + 1 to m2 − 1 do
829: a2[i] ← h(a2[i − 1],M2[i])

830: a2[m2] ← g(a2[m2 − 1],M2[m2])
831: if a1[m1] = a2[m2] then
832: return 1
833: else
834: return 0

Figure 46: Pseudocodes for the gameG3 and the adversaryAhK ,gK .
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B.1.2 Ideal Cipher Model

A block cipher with block lengthn and key lengthκ is called an (n, κ) block cipher. LetE :
{0, 1}κ × {0, 1}n → {0, 1}n be an (n, κ) block cipher. Then,E(K, ·) = EK(·) is a permutation for every
K ∈ {0, 1}κ. An (n, κ) block cipherE is called an ideal cipher ifEK is a truly random permutation
for everyK.

The lazy evaluation of an ideal cipher is described as follows. The encryption oracleE receives
a pair of a key and a plaintext as a query, and returns a randomly selected ciphertext. On the other
hand, the decryption oracleD receives a pair of a key and a ciphertext as a query, and returns a
randomly selected plaintext. The oraclesE andD share a table of triplets of keys, plaintexts and
ciphertexts, which are produced by the queries and the corresponding replies. Referring to the
table, they select a reply to a new query under the restriction thatEK is a permutation for everyK.

B.2 Analysis

In this section, we show that Lesamnta is indifferentiable from the VIL random oracle in the ideal
cipher model. The following theorem states the indifferentiability of Lesamnta in the ideal cipher
model. In the remaining part of this section,L is denoted byE′, and the decryption functions ofE
andE′ are denoted byD andD′, respectively.

Theorem 2 Let E andE′ be (n, n) block ciphers. LetA be an adversary that asks at mostqH queries
to the VIL oracle,qE (qD) queries to the encryption (decryption) oracle forE, andqE′ (qD′) queries
to the encryption (decryption) oracle forE′. Let ℓ be the maximum number of message blocks in a
VIL query. Suppose thatℓqH + qE + qD + qE′ + qD′ ≤ 2n−1 andℓqH ≥ 1, qE ≥ 1, qD ≥ 1, qE′ ≥ 1,
qD′ ≥ 1. Then, for Lesamnta, in the ideal cipher model,

Advindiff
Lesamnta,S E ,S D,S E′ ,S D′

(A) ≤ 3 (ℓqH + qE + qD + qE′ + qD′)2

2n
,

where the simulatorsS E, S D andS E′ , S D′ are given in Figure 47.S E (S D) is a simulator of the
encryption (decryption) oracle forE. S E′ (S D′) is a simulator of the encryption (decryption) oracle
for E′. S E runs in timeO(qE(qE + qD)). S D runs in timeO(qD(qE + qD)). S E′ makes at most
2qE′ queries and runs in timeO(qE′(qE + qD)). S D′ makes at most 2qD′ queries and runs in time
O(qD′(qE + qD)).

The simulators simulate the ideal ciphers using lazy evaluation. In Figure 47,P(s) andC(s)
(P′(s) andC′(s)) represent the set of plaintexts and that of ciphertexts for E (E′), respectively,
which are available for the reply to the current query with the keys. They are initially{0, 1}n, and
their elements are deleted one by one as the simulation proceeds.

Let (si, xi, yi) be the triplet determined by thei-th query of the adversary and the corresponding
answer, whereEsi(xi) = yi. Then, for the MMO compression function,si is a chaining variable,
andxi is a message block. The triplets naturally defines a graph which initially consists of a single
node labeled by the initial valueIV and grows as the simulation proceeds. (si, xi, yi) adds two nodes
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P(s)← {0, 1}n
4: C(s)← {0, 1}n
5: P′(s)← {0, 1}n
6: C′(s)← {0, 1}n

InterfaceE(s, x):

200: if s ∈ T then
201: Es(x)

$← C(s) \ Sbad

202: T ← T ∪ {Es(x) ⊕ x}
203: else
204: Es(x)

$← C(s)

205: V ← V ∪ {s}
206: P(s)← P(s) \ {x}
207: C(s)← C(s) \ {Es(x)}
208: return Es(x)

InterfaceD(s, x):

300: if s ∈ T then
301: Ds(x)

$← P(s) \ Sbad

302: T ← T ∪ {Ds(x) ⊕ x}
303: else
304: Ds(x)

$← P(s)

305: V ← V ∪ {s}
306: P(s)← P(s) \ {Ds(x)}
307: C(s)← C(s) \ {x}
308: return Ds(x)

InterfaceE′(s, x):

400: if s ∈ T then
401: M̃ ← getnode(s)
402: if x ∈ {lb(M(0)), lb(M(1))} then
403: if x = lb(M(0)) then
404: E′s(x)← H(M(0)) ⊕ lb(M(0))
405: else
406: E′s(x)← H(M(1)) ⊕ lb(M(1))

407: if E′s(x) < C′(s) then
408: return fail

409: else
410: E′s(x)

$← C′(s)

411: else
412: E′s(x)

$← C′(s)

413: V ← V∪ {s}
414: P′(s)← P′(s) \ {x}
415: C′(s)← C′(s) \ {E′s(x)}
416: return E′s(x)

InterfaceD′(s, x):

500: if s ∈ T then
501: M̃ ← getnode(s)
502: if x ∈ {H(M(i)) ⊕ lb(M(i)) | i = 0, 1} then
503: if x = H(M(0)) ⊕ lb(M(0)) then
504: D′s(x)← lb(M(0))
505: else if x = H(M(1)) ⊕ lb(M(1)) then
506: D′s(x)← lb(M(1))

507: else
508: D′s(x)

$← P′(s) \ {lb(M(0)), lb(M(1))}
509: else
510: D′s(x)

$← P′(s)

511: V ← V∪ {s}
512: P′(s)← P′(s) \ {D′s(x)}
513: C′(s)← C′(s) \ {x}
514: return D′s(x)

Figure 47: Pseudocode for the simulatorsS E, S D andS E′ , S D′. H represents the VIL random oracle.
Sbad = {y | y ∈ {0, 1}n ∧ x ⊕ y ∈ V ∪ T }. pad(M(0)) = M̃‖lb(M(0)), andpad(M(1)) = M̃‖lb(M(1)).
M̃ = M(0)‖10l (0 ≤ l ≤ n − 2) andlb(M(0)) = 0‖bin(|M(0)|). M̃ = M(1) andlb(M(1)) = 1‖bin(|M(1)|).
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labeled bysi andzi = xi⊕yi, and an edge labeled byxi from si to zi. The additions avoid duplication
of nodes with the same labels.

The simulators use two setsV andT .V keeps all the labels of the nodes with outgoing edge(s)
in the graph.T keeps all the labels of the nodes reachable from the node labeled by IV following
the paths. The proceduregetnode(s) returns the sequence of labels of the edges on the path from
the node labeled byIV to the node labeled bys.

S E andS D select a reply not simply fromC(s) andP(s) but fromC(s) \Sbad andP(s) \Sbad. It
prevents most of the events which make the simulators fail. For example, since{y | x⊕y ∈ T } ⊂ Sbad,
every node inT has a unique path from the node labeled byIV. Thus,M̃ is uniquely identified at
the lines 401 and 501.

The most critical work of the simulators is to reply to the decryption query related to the output
function in Lesamnta for some inputM. Let (s, x) be the query to the simulatorS D′. In order to
reply to (s, x) properly,S D′ has to askM to the VIL random oracleH and returnH(M)⊕x. Owing to
the padding schemepad, there exist only two possibilities forM, M(0) andM(1), which correspond
to the message blocks̃M fed to the compression functions before the output function. Thus,S D′

can accomplish the work.

C PRF Modes Using Lesamnta

Some notations and definitions used in the remaining part aregiven in Appendix A.

C.1 Pseudorandomness with Multi-Oracle

Let B = {0, 1}n. Let A be an adversary with acces tom pairs of oraclesu1, u′1, u2, u′2, . . . , um, u′m.
Them-prfp-advantage ofA against (h, g) is defined as follows:

Advm-prfp
h,g (A) =

∣∣∣∣Pr[AhK1 ,gK1 ,...,hKm ,gKm = 1 |K1, . . . ,Km
$← B] −

Pr[Aρ1,ρ
′
1,...,ρm,ρ

′
m = 1 | ρ1, ρ

′
1, . . . , ρm, ρ

′
m

$← Func(B,B)]
∣∣∣∣

Lemma 7 Let hK(x) = EK(x) ⊕ x and gK(x) = LK(x) ⊕ x. Let A be a prfp-adversary with 2m
oracles. Suppose thatA runs in time at mostt, and makes at mostq queries. Then, there exists a
prfp-adversaryB such that

Advm-prfp
h,g (A) ≤ m · Advprpp

E,L (B) +
q(q − 1)

2n+1
.

B makes at mostq queries and runs in time at mostt + O(q(Th + Tg)), whereTh andTg represent
the time required to computeh andg, respectively.
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Proof. For a permutationπ ∈ Perm(B), let π̃(x) = π(x) ⊕ x.

Advm-prfp
h,g (A) =

∣∣∣∣Pr[AhK1 ,gK1 ,...,hKm ,gKm = 1 |K1, . . . ,Km
$← B]

− Pr[Aρ1,ρ
′
1,...,ρm,ρ

′
m = 1 | ρ1, ρ

′
1, . . . , ρm, ρ

′
m

$← Func(B,B)]
∣∣∣∣

≤
∣∣∣∣Pr[AhK1 ,gK1 ,...,hKm ,gKm = 1 |K1, . . . ,Km

$← B]

− Pr[Aπ̃1,π̃
′
1,...,π̃m,π̃

′
m = 1 | π1, π

′
1, . . . , πm, π

′
m

$← Perm(B)]
∣∣∣∣ +

∣∣∣∣Pr[Aπ̃1,π̃
′
1,...,π̃m,π̃

′
m = 1 | π1, π

′
1, . . . , πm, π

′
m

$← Perm(B)]

− Pr[Aρ1,ρ
′
1,...,ρm,ρ

′
m = 1 | ρ1, ρ

′
1, . . . , ρm, ρ

′
m

$← Func(B,B)]
∣∣∣∣ .

For 0≤ i ≤ m, letOi be 2m oracles such thathK1, gK1, . . . , hKi, gKi , π̃i+1, π̃
′
i+1, . . . , π̃m, π̃

′
m, where

K1, . . . ,Ki
$← B andπi+1, π

′
i+1, . . . , πm, π

′
m

$← Perm(B). A prpp-adversaryB is constructed usingA
as a subroutine. The algorithm ofB with oracleu, u′ is as follows:

1. i
$← {1, 2, . . . ,m}.

2. runsA with oracleshK1, gK1, . . . , hKi−1, gKi−1, ũ, ũ
′, π̃i+1, π̃

′
i+1, . . . , π̃m, π̃

′
m, whereK1, . . . ,Ki−1

$←
B andπi+1, π

′
i+1, . . . , πm, π

′
m

$← Perm(B).

3. outputsA’s output.

Then,

Pr[BEK ,LK = 1 |K $← B] =
1
m

m∑

i=1

Pr[AOi = 1]

and

Pr[Bπ,π
′
= 1 | π, π′ $← Perm(B)] =

1
m

m−1∑

i=0

Pr[AOi = 1] .

Thus,

Advprpp
E,L (B) =

∣∣∣∣ Pr[BEK ,LK = 1 |K $← B] − Pr[Bπ,π
′
= 1 | π, π′ $← Perm(B)]

∣∣∣∣

=
1
m

∣∣∣∣Pr[AOm = 1] − Pr[AO0 = 1]
∣∣∣∣ .

B makes at mostq queries and runs in time at mostt+O(q(Th +Tg)). There may exist an algorithm
with the same resources and larger advantage. Let us also call it B. Then,

∣∣∣∣Pr[AOm = 1] − Pr[AO0 = 1]
∣∣∣∣ ≤ m · Advprpp

E,L (B) .
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It is possible to distinguish ˜π1, π̃
′
1, . . . , π̃m, π̃

′
m andρ1, ρ

′
1, . . . , ρm, ρ

′
m only by the fact that there

may be a collision forρ(x) ⊕ x for ρ ∈ Func(B,B). Thus, sinceA makes at mostq queries,
∣∣∣∣Pr[Aπ̃1,π̃

′
1,...,π̃m,π̃

′
m = 1 | π1, π

′
1, . . . , πm, π

′
m

$← Perm(B)]

−Pr[Aρ1,ρ
′
1,...,ρm,ρ

′
m = 1 | ρ1, ρ

′
1, . . . , ρm, ρ

′
m

$← Func(B,B)]
∣∣∣∣

≤ q(q − 1)
2n+1

.

�

C.2 Security of Keyed-via-IV Mode

For the compression functionh and the output functiong, let gh∗ : B × B+ → B be a function
family such thatgh∗(K,M) is defined forK ∈ B andM ∈ B+ as follows: LetM = M(1)‖ · · · ‖M(N)

andM(i) ∈ {0, 1}n for 1 ≤ i ≤ N. Then,

1. a(0) = K,

2. If N ≥ 2, thena(i) = h(a(i−1),M(i)) for 1 ≤ i ≤ N − 1,

3. gh∗(K,M) = g(a(N−1),M(N)).

Keyed-Lesamnta is a functiongh∗ : B × D → B such that D =

{X | X = pad(M) for someM ∈ {0, 1}∗} ⊂ B+, where pad is the padding function. Thus, in
the following part,gh∗ is analyzed instead of Keyed-Lesamnta. The analysis is similar to that of
[15].

Lemma 8 Let A be a prf-adversary againstgh∗. Suppose thatA runs in time at mostt, and makes
at mostq queries, and each query has at mostℓ blocks. Then, there exists a prfp-adversaryB with
access to 2q oracles such that

Advprf
gh∗(A) ≤ ℓ · Advq-prfp

h,g (B) .

B makes at mostq queries and runs in time at mostt + O(q (ℓ Th + Tg)).

Proof. LetB≤i =
⋃i

d=0Bd. For i ∈ {0, 1, . . . , ℓ} and two functionsα : B≤i → B andβ : Bi → B, a
functionIi[α, β] : B≤ℓ → B is defined as follows:

Ii[α, β](M1M2 · · ·Mk) =


α(M1 · · ·Mk) if k ≤ i,

gh∗(β(M1 · · ·Mi),Mi+1 · · ·Mk) if k > i.

Notice thatα andβ are just random elements fromB if i = 0. Let

Pi = Pr[AIi[α,β]) = 1 |α $← Func(B≤i,B) ∧ β $← Func(Bi,B)] .
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Note that

Advprf
gh∗(A) =

∣∣∣P0 − Pℓ
∣∣∣ .

A q-prfp-adversaryB with 2q oracles is constructed usingA as a subroutine. Fori ∈ {1, . . . , ℓ},
a q-prfp-adversaryB

u1,u′1,...,uq,u′q
i is first defined.

Bi first picksγ
$← Func(B≤i−1,B). Actually, Bi implementsγ via lazy sampling. Then,Bi runs

A. Bi has to answerq queries ofA appropriately. In order to do that,Bi maintains a counteridx,
which is initially set to 0. WhenBi receives thej-th queryM j = M(1)

j M(2)
j · · ·M

(k)
j of A, Bi returns



γ(M(1)
j · · ·M

(k)
j ) if k < i,

u′
idx(M(1)

j ···M
(i−1)
j )

(M(i)
j ) if k = i,

gh∗(uidx(M(1)
j ···M

(i−1)
j )(M

(i)
j ),M(i+1)

j · · ·M(k)
j ) if k > i.

In the above,idx(M(1)
j · · ·M

(i−1)
j ) is a unique integer in{1, . . . , q} which depends on the query

M(1)
j · · ·M

(i−1)
j . It can be defined using the counteridx, which is initially 0. If there is a previous

query Mp (p < j) such thatM(1)
p · · ·M(i−1)

p = M(1)
j · · ·M

(i−1)
j , then defineidx(M(1)

j · · ·M
(i−1)
j ) =

idx(M(1)
p · · ·M(i−1)

p ), and otherwise increaseidx by 1 and defineidx(M(1)
j · · ·M

(i−1)
j ) = idx.

Now, suppose thatBi is given oraclesul, u′l such thatul = hKl andu′l = gKl with Kl
$← B for

1 ≤ l ≤ q. Then, whenA makes thej-th queryM j = M(1)
j M(2)

j · · ·M
(k)
j , Bi returns



γ(M(1)
j · · ·M

(k)
j ) if k < i,

gK
idx(M(1)

j ···M
(i−1)
j )

(M(i)
j ) = g(Kidx(M(1)

j ···M
(i−1)
j ),M

(i)
j ) if k = i,

gh∗(hK
idx(M(1)

j ···M
(i−1)
j )

(M(i)
j ),M(i+1)

j · · ·M(k)
j ) = gh∗(Kidx(M(1)

j ···M
(i−1)
j ),M

(i)
j M(i+1)

j · · ·M(k)
j ) if k > i.

SinceKidx(M j
1···M

j
i−1) is a random function ofM j

1 · · ·M
j
i−1, we can say thatA hash oracle access to

Ii−1[α, β] with α
$← Func(B≤i−1,B) andβ

$← Func(Bi−1,B). Therefore,

Pr[B
hK1 ,gK1 ,...,hKq ,gKq

i = 1 |K1, . . . ,Kq
$← B] = Pi−1 .

Next, suppose thatBi is given 2q independent random oraclesρ1, ρ
′
1, . . . , ρq, ρ

′
q

$← Func(B,B).
Then,Bi returns



γ(M(1)
j · · ·M

(k)
j ) if k < i,

ρ′
idx(M(1)

j ···M
(i−1)
j )

(M(i)
j ) if k = i,

gh∗(ρidx(M(1)
j ···M

(i−1)
j )(M

(i)
j ),M(i+1)

j · · ·M(k)
j ) if k > i.

Since ρidx(M(1)
j ···M

(i−1)
j )(M

(i)
j ) and ρ′

idx(M(1)
j ···M

(i−1)
j )

(M(i)
j ) are independent random functions of

M(1)
j · · ·M

(i−1)
j M(i)

j , we can say thatA has oracle access toIi[α, β] with α
$← Func(B≤i,B) and

β
$← Func(Bi,B). Therefore,

Pr[B
ρ1,ρ

′
1,...,ρq,ρ

′
q

i = 1 | ρ1, ρ
′
1, . . . , ρq, ρ

′
q

$← Func(B,B)] = Pi .
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Finally, B is defined as follows: It first choosesi
$← {1, . . . , ℓ}, then behaves identically toBi.

Then,

Advq-prfp
h,g (B) =

∣∣∣∣Pr[BhK1 ,gK1 ,...,hKq ,gKq = 1 |K1, . . . ,Kq
$← B]

− Pr[Bρ1,ρ
′
1,...,ρq,ρ

′
q = 1 | ρ1, ρ

′
1, . . . , ρq, ρ

′
q

$← Func(B,B)]
∣∣∣∣

=
1
ℓ

∣∣∣∣P0 − Pℓ
∣∣∣∣ =

1
ℓ

Advprf
gh∗(A) .

B makes at mostq queries and runs in time at mostt+O(q (ℓ Th+Tg)). There may exist an algorithm
with the same resources and larger advantage. Let us also call it B. Then,

Advprf
gh∗(A) ≤ ℓ · Advq-prfp

h,g (B) .

�

The following theorem directly follows from Lemmas 7 and 8.

Theorem 3 Let A be a prf-adversary againstgh∗. Suppose thatA runs in time at mostt, and makes
at mostq queries, and each query has at mostℓ blocks. Then, there exists a prpp-adversaryB such
that

Advprf
gh∗(A) ≤ ℓq · Advprpp

E,L (B) +
ℓq(q − 1)

2n+1
.

B makes at mostq queries and runs in time at mostt + O(q (ℓ Th + Tg)).

The following corollary is immediate from Theorem 3. It is onthe pseudorandomness of
Keyed-Lesamnta.

Corollary 2 Let A be a prf-adversary against Keyed Lesamnta. Suppose thatA runs in time at
most t, and makes at mostq queries, and each query has at mostℓ blocks. Then, there exists a
prpp-adversaryB such that

Advprf
Keyed(A) ≤ ℓq · Advprpp

E,L (B) +
ℓq(q − 1)

2n+1
.

B makes at mostq queries and runs in time at mostt +O(q (ℓ TE + TL)), whereTE andTL represent
the time required to computeE andL, respectively.

C.3 Security of Key-Prefix Mode

Let νE : B → B be a function such thatνE(K) = EIV(K) ⊕ K. Key-Prefix-Lesamnta with a key
K ∈ B and a message inputM ∈ {0, 1}∗ is gh∗(νE(K),M′), whereM′ ∈ B+ andpad(K‖M) = K‖M′.

The following lemma says that Key-Prefix-Lesamnta is a PRF ifgh∗ is a PRF andνE is a PRBG.
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Lemma 9 Let A be a prf-adversary against Key-Prefix-Lesamnta. Suppose that A runs in time
at mostt and makes at mostq queries, and each query has at mostℓ blocks. Then, there exist a
prf-adversaryB againstgh∗ and a prbg-adversaryB′ againstνE such that

Advprf
Key-prefix(A) ≤ Advprf

gh∗(B) + Advprbg
νE

(B′) .

B runs in time at mostt +O(ℓnq), makes at mostq queries, and each query has at mostℓ blocks.B′

runs in time at mostt + O(q (ℓ Th + Tg)).

Now, the security of Key-Prefix-Lesamnta as a PRF is reduced to the security ofE andL as a
PRP pair and that ofνE as a PRBG.

Theorem 4 Let A be a prf-adversary against Key-Prefix-Lesamnta. Suppose that A runs in time
at mostt, and makes at mostq queries, and each query has at mostℓ blocks. Then, there exist a
prpp-adversaryB againstE andL, and a prbg-adversaryB′ againstνE such that

Advprf
Key-prefix(A) ≤ ℓq · Advprpp

E,L (B) + Advprbg
νE

(B′) +
ℓq(q − 1)

2n+1
.

B makes at mostq queries and runs in time at mostt + O(q (ℓ TE + TL)). B′ runs in time at most
t + O(q (ℓ TE + TL)).

Document version 1.0, Date: 30 October 2008
98


