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Abstract. In this paper I describe the construction of Dynamic SHA2 
family of cryptographic hash functions. They are built with design 
components from the SHA-2 family, but I use the bits in message as 
parameters of function G, R and ROTR operation in the new hash 
function. It enabled us to achieve a novel design principle:  When 
message is changed, the calculation will be different. It makes the system 
can resistant against all extant attacks. Dynamic SHA2 is posted[16] 
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1 Introduction 
The SHA-2 family of hash functions was designed by NSA and adopted 
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010 
[6]. Since MD5, SHA-0 and SHA-1 was brought out, people have not 
stopped attacking them, and they succeed. Such as: den Boer and 
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5] 
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in 
2004, and Wang et al. [9–12] in 2005. Most well known cryptographic 
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and 
SHA-1, have succumbed to those attacks. 

Since the developments in the field of cryptographic hash functions, 
NIST decided to run a 4 year hash competition for selection of a new 
cryptographic hash standard [7]. And the new cryptographic hash 
standard will provide message digests of 224, 256, 384 and 512-bits. 

In those attacks, we can find that when different message inputted, 
the operation in the hash function is no change. If message space is 
divided many parts, in different part, the calculation is different, the 
attacker will not know the relationship between message and hash value. 
The hash function will be secure. To achieve the purpose, Dynamic 
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SHA2 use bits in message as parameter of function G, R and ROTR 
operation to realize the principle. 

 
My Work: By introducing a novel design principle in the design of hash 
functions, and by using components from the SHA-2 family, I describe 
the design of a new family of cryptographic hash functions called 
Dynamic SHA2. The principle is: 

When message is changed, the calculation will be different. 
 
The principle combined with the already robust design principles present 
in SHA-2 enabled us to build a compression function of Dynamic SHA2 
that has the following properties: 
 
1. There is not message expansion part. 
2. The iterative part includes three parts. 
3. The first part includes one round. Mix message words once. 
4. The second part includes 9 rounds. Mix no message word. 
5. The third part includes 7 rounds. Mix message words 7 times. 
 
2 Preliminaries and notation 
In this paper I will use the same notation as that of NIST: FIPS 180-2 
description of SHA-2 [6]. 

The following operations are applied to 32-bit or 64-bit words in 
Dynamic SHA2: 
 
1. Bitwise logical word operations:‘∧’–AND ,‘∨’–OR,‘⊕’–XOR and 
‘ ’–Negation. ¬

2. Addition ‘+’ modulo or modulo . 322 642

3. The shift right operation, , where x is a 32-bit or 64-bit word 
and n is an integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHR n

4.The shift left operation, , where x is a 32-bit or 64-bit word and 
n is an integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a 
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 

)(xROTRn



64). 
6. The rotate left (circular left shift) operation, , where x is a 
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 
64). 

)(xROTLn

 
Depending on the context I will sometimes refer to the hash function as 
Dynamic SHA2, and sometimes as Dynamic SHA2-224/256 or Dynamic 
SHA2-384/512. 
 
2.1 Functions 
Dynamic SHA2 includes four functions. The functions are used in 
compression function. 
 
2.1.1 Function G(x1, x2, x3, t) 
Function G operates on three words x1, x2, x3 and an integer t, produces 
a word y as output. And function G as follow: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1 )))32(1((
x3))x2((x1 ))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

 

Table 2.1. function G for Dynamic SHA2 
 

2.1.2 Function R(x1,x2,x3,x4,x5,x6,x7,x8,t)  
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an 
integer t. produces one word y as output. Function R as follow:  

)8)7)6)5)4)3)21((((((( xxxxxxxxROTRy t ⊕+⊕+⊕+⊕=  
 

2.1.3 Function R1(x1,x2,x3,x4,x5,x6,x7,x8)  
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7, x8. 
produces one word y as output. Function R1 as table 2.3 show:  

 
2.1.4 Function COMP(hv1,hv2, …,hv8,w(0),w(1),…,w(7),t)  
Function COMP operates on sixteen words hv1,hv2, …,hv8, w(0), 
w(1),…,w(7) and an integer t. Function COMP is defined as table 2.4. 



x1 x2 x3 f1 f2 f3 f4 
0 0 0 0 0 1 1 
0 0 1 1 1 0 0 
0 1 0 1 0 1 0 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 0 1 0 1 1 0 
1 1 0 0 1 1 1 
1 1 1 1 0 0 0 

Table 2.2 Truth table for logical functions 
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Dynamic 
SHA2-384/512 
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Table 2.3. function R1 for Dynamic SHA2 
 

2.2 Dynamic SHA2 Constants 
Dynamic SHA2 does not use any constants. 
 
2.3 Preprocessing 
Preprocessing in Dynamic SHA2 is exactly the same as that of SHA-2. 
That means that these three steps: padding the message M, parsing the 
padded message into message blocks, and setting the initial hash value, 

0H  are the same as in SHA2. Thus in the parsing step the message is 
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of 
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit) 
words denoted as . )(
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1
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Dynamic SHA2 may be used to hash a message, M, having a length of  l



Dynamic 

SHA2-224/256 

7)4)w((tThv1
hv1hv2

w(t)hv2hv3
7)5)w((t3)thv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((thv5hv6
(hv6)ROTRhv7

7)7)w((thv7hv8
31)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2
hv2hv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((thv5hv6
(hv6)ROTRhv7

hv7hv8
31)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

31w(t))(SHR

31w(t))(SHR

15

30

31(w(t)))(SHR

31(w(t)))(SHR

25

20

10

5

∧++=
=

+=
∧++∧=

=

∧++=
=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=
=

=
∧=

∧

∧

∧

∧

Dynamic 

SHA2-384/512 

7)4)w((tThv1
(hv1)ROTRhv2

w(t)hv2hv3
7)5)w((t3)(w(t)))(SHRhv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

7)7)w((thv7hv8
63)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2

(hv2)ROTRhv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

hv7hv8
63)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

63(w(t)))(SHR

60

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

30

63(w(t)))(SHR

62

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

54

48

42

36

24

18

12

6

∧++=
=

+=
∧++∧=

=

∧++=

=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=

=

=
∧=

∧

∧

∧

∧

∧

∧

∧

∧

Table 2.4  function COMP for Dynamic SHA2 



bits, where 0≤ < . l 642
 
2.3.1 padding 
2.3.1.1 Dynamic SHA-224/256 
Suppose that the length of the message M is L bits. Append the bit “1” to 
the end of the message, followed by k zero bits, where k is the smallest, 
non-negative solution to the equation L+1+k ≡ 448 mod 512. Then 
append the 64-bit block that is equal to the number L expressed using a 
binary representation.  
 

Dynamic 
SHA2-224 

Dynamic 
SHA2-256 

Dynamic SHA2-384 Dynamic SHA2-512 

,fabefaH

,fafH

,H

,bffcH

,efH

,ddH

,cdH

,edcH

)(

)(

)(

)(

)(

)(

)(

)(

44

79864

68581511

3100

593970

173070

507367

81059

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

=

=

=

=

=

=

=

=

 

5be0cd19,

1f83d9ab,

9b05688c,

510e527f,

a54ff53a,

3c6ef372,

,bb67ae85

,6a09e667

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

fa4fa4,47b5481dbe

f98fa7,db0c2e0d64

581511,8eb44a8768

c00b31,67332667ff

0e5939,152fecd8f7
70dd17,9159015a30

,7cd507629a292a36

,059ed8cbbb9d5dc1

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H
H

H

H

7e2179,5be0cd1913

41bd6b,1f83d9abfb

3e6c1f,9b05688c2b

e682d1,510e527fad

1d36f1,a54ff53a5f

94f82b,3c6ef372fe

,caa73bbb67ae8584

,bcc9086a09e667f3

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

Table 2.5 The initial hash value, 0H  for Dynamic SHA 
 

2.3.1.2 Dynamic SHA-384/512 
Suppose that the length of the message M is L bits. Append the bit “1” to 
the end of the message, followed by k zero bits, where k is the smallest, 
non-negative solution to the equation L+1+k ≡ 896 mod 1024. Then 
append the 128-bit block that is equal to the number L expressed using a 
binary representation. 
 
2.4 Initial Hash Value 0H  
The initial hash value, 0H  for Dynamic SHA is the same as that of 
SHA-2 (given in Table 2.5). 
 
 



For i = 1 to N: 
{ 
1.Initialize eight working variables a, b, c, d, e, f, g and h with the 
hash value: 
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2. Iterative part 
2.1 The first iterative part 
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2.2 The second iterative part 
For t=0 to 8 
{ 
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2.3 The third iterative part 
For t=1 to 7 
{ 
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3.Compute the  intermediate hash value thi )(iH  : 

)1(
0

)(
0

−+= ii HaH ,  ,  ,  , )1(
1

)(
1

−+= ii HbH )1(
2

)(
2

−+= ii HcH )1(
3

)(
3

−+= ii HdH
)1(

4
)(

4
−+= ii HeH ,  ,  ,   )1(

5
)(

5
−+= ii HfH )1(

6
)(

6
−+= ii HgH )1(

7
)(

7
−+= ii HhH

} 
Table 2.6 Algorithmic description of Dynamic SHA2 hash function. 



2.5 Dynamic SHA2 Hash Computation 
The Dynamic SHA2 hash computation uses functions and initial 

values defined in previous subsections. So, after the preprocessing is 
completed, each message block,  , is processed in 
order, using the steps described algorithmically in Table 2.6.  

)()1()0( ,.....,, NMMM

 
The algorithm uses 1) a message schedule of sixteen 32-bit (resp. 

64-bit) words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) 
a hash value of eight 32-bit (resp. 64-bit) words. The final result of 
Dynamic SHA2-256 is a 256-bit message digest and of Dynamic 
SHA2-512 is a 512-bit message digest. The final result of Dynamic 
SHA2-224 and Dynamic SHA2-384 are also 256 and 512 bits, but the 
output is then truncated as 224 (resp. 384) bits. The words of the message 
schedule are labeled . The eight working variables are 
labeled  and  and sometimes they are called “state 
register”. The words of the hash value are labeled , which 
will hold the initial hash value, 

1510 ,...,, WWW

gfedcba ,,,,,, h
)(

7
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1
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0 ,...,, iii HHH
)0(H , replaced by each successive 

intermediate hash value (after each message block is processed), )(iH , 
and ending with the final hash value, )( NH . 

Dynamic SHA2 also uses one temporary words T. 
 

3 Security of Dynamic SHA2 
In this section I will make an initial analysis of how strongly collision 
resistant, preimage resistant and second preimage resistant Dynamic 
SHA2 is. I will start by describing our design rationale, then I will 
discuss the strength of the function against known attacks for finding 
different types of collisions. 
 
3.0 Cryptographic Hash Functions 
After preprocess message, there are some message blocks that include 
512(resp.1024) bits.  
Let there exist message blocks M(1),M(2),…,M(n). Let f(h,Mi) is 
compression function, it is as table 2.6. The operation of the iterated hash 
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the 



message blocks are hashed in order. There exist f(h(i-1),M(i))=h(i) i = 
1,2,...,n. As table 3.1 

f f f…

M1 MnM2 

IV F(x) f

Mj

…

 

 Table 3.1 The iterated construction of compression function f 
 
When someone find collisions, he can randomly guess message blocks 
except for one block M(j) ,where 0≤j≤n. Then he can calculate out h(j-1) 
with function f and message blocks M(1),…,M(j-1) , and he can 
backward function f with message blocks M(j+1),…,M(n) to calculate 
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j) 
to complete findding collisions. So I will discuss the security of Dynamic 
SHA2 in one block. 
 
3.1 Properties of iterative part 
The iterative part includes three parts. 
 
3.1.1 Properties of iterative part one 
In iterative part one, all message bits have been mixed. And function 
COMP is called twice. All bits in message words  have been used 
as parameters of function G, R and ROTR operation. 

80 ,WW

 
3.1.2 Properties of iterative part two 
It is relatively easy to prove the following Theorem: 
 
Theorem 1: The iterative part two of Dynamic SHA2 is a bijection 

. working variables are w-bit words. ww ×× → 88 }1,0{}1,0{:ξ

Proof. Let hv=(a, b, c, d,e, f, g, h). where a, b, c, d,e, f, g, h are working 
variables before iterative part two. And hv1= (a1, b1, c1, d1,e1, f1, g1, 



h1), where a1, b1, c1, d1,e1, f1, g1, h1 are working variables after 
iterative part two. 

The working variables are b-bit words. Then we have the function 
F(hv)=hv’ and .  wwF ×× → 88 }1,0{}1,0{:

It is enough to known that, to a given hv’, there is a hv1 make 
F(hv’)=hv1. 

To a given hv1’, it is easy to backward the iterative part two and 
compute the unique value for hv1. So to a given hv1’, there is a hv1 
make F(hv1)=hv1’. 

So the iterative part two of Dynamic SHA2 is a bijection 
                                          □ ww ×× → 88 }1,0{}1,0{:ξ

 
After iterative part one, all bits in message have been mixed. From the 
definition of function R1, it is enough to known that all bits in working 
variables a,b,c,d,e,f,g will affect all bits in temporary words T. After call 
function R1 9 times, all bits in working variables that before iterative part 
two will affect all bits in working variables that after iterative part two. 
So all message bits will affect all bits in last hash value. 
 
3.1.3 Properties of iterative part three 
In iterative part three, all message bits will be mixed seven times. And 
function COMP is called fourteen times. All bits in message words 

have been used as 
parameters of function G, R and ROTR operation. 

15141312111097654321 ,,,,,,,,,,,,, WWWWWWWWWWWWWW

 
In iterative part one and three, all bits in message have been used as 
parameters of function G, R and ROTR operation. This will divide 
message space into (resp. ) parts. 5122 10242

 
3.2 Design rationale 

The reasons for principle: When message is changed, the 
calculation will be different. 

From the definition of function G, R and ROTR operations, it is easy 
to know all bits in message have been used as parameters of function G, 



R and ROTR operation. One bit different in message, different logical 
function or different ROTR operation will be done, and it will make the 
calculation different. Different message will lead to different calculation, 
these different calculations divide message space into (resp. ) 
parts. In a part, there is 

5122 10242

12 512512 =−  (resp. 12 10241024 =− ) message value.  
 
Why Dynamic SHA2 does not have constants?  
The reasons why I decided not to use any constants is that Dynamic 
SHA2 is secure enough. 
 
Controlling the differentials is hard in Dynamic SHA2: 

In Dynamic SHA2, it is known that when message is changed, the 
calculation will be different. To analyze Dynamic SHA2, it need the 
unchangeable formulas that represent function describe function G, R and 
data-depend ROTR operation. There are three ways to analyze Dynamic 
SHA2: 

1. Guess the parameters of function G, R and ROTR operation. The 
parameters of function G, R and ROTR operation divide message 
space into (resp. ) parts. In this way, someone select a part 
in the message value space. And there is only one message value in 
a part. He can not find collisions in the same part. 

5122 10242

2. Someone can use Algebraic Normal Form (ANF) to represent 
Dynamic SHA2, but the ANFs that represent function R, R1 has up 
to ,  (resp. , ) monomials. If constitute the 
Arithmetic function based on ANF, the degree of the Arithmetic 
function represents function R, R1 and G is 261, 256, 5 (resp. 518, 
512, 5), there are up to ,  (resp. , ) monomials in 
Arithmetic function represents function R, R1. 

2612 2562 5182 5122

2612 2562 5182 5122

3. Someone can constitute Arithmetic functions to represent Dynamic 
SHA2 as in Appendix 2. But the Arithmetic function that represents 
function R and data-depend ROTR operation is complex 
exponential function with round-off instruction. After iterative parts, 
the Arithmetic function that represents function R and data-depend 
ROTR operation will be very huge. 



 
3.3 Finding Preimages of Dynamic SHA2 
To a hash function f(·), it need satisfy: 

Given hash value H=f(M), it is hard to find message M that meet 
H=f(M). 

 
There are two ways to find preimages of a hash function: 

1,From the definition of Dynamic SHA2, it follows that from a given 
hash digest it is possible to perform backward iterative steps by guessing 
values that represent some relations between working variables of the 
message part.  

To do this, it needs the parameter of the ROTR operation and 
function G, R in Dynamic SHA2. But in Dynamic SHA2, when message 
changed, the parameter of the ROTR operation and function G, R will 
change. So attacker had to guess the parameter that will be used in 
Dynamic SHA2. From the definition of Dynamic SHA2, it is know that 
all bits in message are used as the parameter of the ROTR operation and 
function G, R. When attacker completes guessing parameters, he has 
guessed all bits in message. 

 
2, The probability of random guess of finding preimages is 
(resp. , , ). 2242− 2562− 3842− 5122−

 
3.4 Finding Second Preimages of Dynamic SHA2 
To a hash function f(·), it need satisfy: 

Given M, it is hard to find M’≠ M s.t. f(M) = f(M’). 
 

There are five ways to find second preimages of a hash function: 
1, Get hash value H=f(M) of message M, and find different message 

M’≠ M that has hash value H= f(M’). In section 3.3, it is known 
that it is hard to calculate out the message M’ from given hash value 
H. 

2, Given M, and find out the relationship between the difference △M 
and the difference △H=f(M+△M)-f(M). And find out △M≠0 that 



make △H=0. To do this, someone will set up some system of 
equations obtained from the definition of the hash function, then 
trace forward and backward some initial bit differences that will 
result in fine tuning and annulling of those differences and finally 
obtain second preimages. It need know the unchangeable formulas 
that represent hash function f. In Dynamic SHA2, when message is 
changed, the calculation is different. To get unchangeable formulas 
that represent hash function f, it need get ANFs for Dynamic SHA2. 
And the ANFs that represent function R, R1 has up to ,  
(resp. , ) monomials.  

2612 2562
5182 5122

3. To get unchangeable formulas that represent hash function f. It can 
constitute Arithmetic functions to represent Dynamic SHA2. And 
the Arithmetic functions that represent function R, R1 and G are 
exponential functions. Or someone had to constitute 261,256-degree 
(resp. 518, 512-degree) Arithmetic function to represent function R, 
R1 , and there are up to ,  (resp. , ) monomials in 
the Arithmetic function. 

2612 2562 5182 5122

4. Guess the parameters of function G, R and ROTR operation. In this 
way, a part in the message value space is selected. And there is only 
one message value in a part. It can not find second preimages in the 
same part. 

5. The probability of random guess of finding second preimages is 
(resp. , , ). 2242− 2562− 3842− 5122−

 
3.5 Finding Collisions in Dynamic SHA2 
To a hash function f(·), it need satisfy: 

It is hard to find different M and M’ s.t. f(M) = f (M’). 
 
There are five ways to find collisions of a hash function: 

1, Fix message M, and find different message M’ that has hash value 
H=f(M). then the problem become finding Second Preimages of the 
hash function. 

2. Find out the relationship between the (M, M’) and the difference 
△H=f(M)-f(M’). And find out (M,M’) that make △H=0. To do this, 



someone will set up some system of equations obtained from the 
definition of the hash function, then trace forward and backward 
some initial bit differences that will result in fine tuning and 
annulling of those differences and finally obtain collisions. It need 
know the unchangeable formulas that represent hash function f. In 
Dynamic SHA2, when message is changed, the calculation is 
different. To get unchangeable formulas that represent hash function 
f, it need get ANFs for Dynamic SHA2. And the ANFs that 
represent function R,R1 has up to ,  (resp. , ) 
monomials. 

2612 2562 5182 5122

3. To get unchangeable formulas that represent hash function f. It can 
constitute Arithmetic functions to represent Dynamic SHA2. And 
the Arithmetic functions that represent function R, R1 and G are 
exponential functions. Or someone had to constitute 261, 256 - 
degree (resp. 518, 512-degree) Arithmetic function to represent 
function R , and there are up to ,  (resp. , ) 
monomials in the Arithmetic function.. 

2612 2562 5182 5122

4. Guess the parameters of function G, R and ROTR operation. This 
way is select a part in the message value space. And there is only 
one message value in a part. It can not find collisions in the same 
part. 

5. The attack base on the birthday paradox. the workload for birthday 
attack is of O( ) (resp. O( ) O( ) O( )). 1122 1282 1922 2562

 
3.6 Finding collisions in the reduced compression function of 
Dynamic SHA2 
If the message bits are mixed less twice. The system will be weak, 
someone can backward Dynamic SHA2 as table E.2 show. 
 
If the message bits are mixed at least twice, message word  
are used as the parameter of the ROTR operation and function G, R. It 
can backward iterative part as follow: 

8710 ,,, wwww

1. At first, there exist function COMPA and R1A: 
1.1 Function COMPA operates on sixteen words hv1, hv2,…,hv8, 
x0,x1,x1, x2, x3, x4, x5, x6, x7 and an integer t. Function COMPA 



as table 3.2, 3.3, 3.4 show. 
1.2. Function R1A operates on eight words x1,x1, x2, x3, x4, x5, x6, 
x7, x8. produces one word y as output. Function R1 as table 3.2 and 
table 3.3. 
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Table 3.2  function COMPA for Dynamic SHA2-224/256 
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Table 3.3  function COMPA for Dynamic SHA2-384/512 
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SHA2-224/256 
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SHA2-384/512 
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Table 3.4. function R1A for Dynamic SHA2 
 



2. Base on function COMPA and R1A, we can backword the iterative 
steps as follow: 
2.1 Initialize eight last variables , ,..., , eight first 
variables , ,...,  and eight message words 

, ,..., . 

16a 16b 16h
1−a 1−b 1−h

0w 1w 7w
2.2 Input ( , ,..., , , ,..., ,0) into function 
COMP, then we have , ,..., .  

1−a 1−b 1−h 0w 1w 7w
1a 1b 1h

2.3 Guess , ,..., . and input ( , ,..., 
 , , ,..., ,1) into function COMPA, then we have 
, ,..., . 

8w 9w 15w 16a 16b
16h 8w 9w 15w
14a 14b 14h

2.4 Input ( , ,..., , , ,..., ,1) into function 
COMPA, then we have , ,..., . 

14a 14b 14h 0w 1w 7w
12a 12b 12h

2.5 From , ,..., , it can backword as follow: 12a 12b 12h
For t=8 to 0 
{ 
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} 
Then we have , ,..., . 3a 3b 3h
2.6 Operate on , ,...,  and , ,...,  as table E.2 that 

in Appendix 5. then we have , ,..., . 
3a 3b 3h 1a 1b 1h

'8w '9w '15w
2.7 Compare , ,...,  and , ,..., . If 

( , ,..., )= ( , ,..., ), then we find a 
collision. If ( , ,..., )

'8w '9w '15w 8w 9w 15w
'8w '9w '15w 8w 9w 15w

'8w '9w '15w ≠ ( , ,..., ), we had 
to guess ( , ,..., ) again. The size of the space of 
( , ,..., , , ,..., ) is (resp. 

8w 9w 15w
8w 9w 15w

'8w '9w '15w 8w 9w 15w 5123216 22 =×



10246416 22 =× ) and the size of the space of ( , ,..., ) is 
(resp. ). So the probability of ( , ,..., )= 

( , ,..., ) is  (resp. ). 

8w 9w 15w
2562 5122 '8w '9w '15w

8w 9w 15w 2562− 5122−

So if the message bits are mixed at least twice, the probability of 
find the collision is less than (resp. ). 1282− 2562−

 
3.7 Security of message digest truncations 
3.7.1 Security of message digest truncations of Dynamic 
SHA2-224 
The final result of Dynamic SHA2-224 include eight working variables 
a,b,c,d,e,f,g,h, it iclude 256 bits. The output of Dynamic SHA2-224 
include seven working variables a,b,c,d,e,f,g, it iclude 224 bits.  

So the length of the final result of Dynamic SHA2-224 is 256, and 
the length of the output of Dynamic SHA2-224 are 224. The size of the 
space of final result of Dynamic SHA2-224 is , The size of the space 
of output of Dynamic SHA2-224 is . To given output 7-tuple(a’, b’, 
c’, d’, e’, f’, g’), there exist  working variables value h that make 
8-tuple (a’, b’, c’, d’, e’, f’, g’, h) has same output 7-tuple(a’, b’, c’, d’, e’, 
f’, g’). 

2562
2242

322

To a given output of Dynamic SHA2-224, there are  final result 
that has the given output. And the probability of find out a message that 
has the given final result is .  So the probability of find out a 
message that has the given given output is 

322

2562−

22432256 222 −− =× . 
 

3.7.2 Security of message digest truncations of Dynamic 
SHA2-384 
The final result of Dynamic SHA2-384 include eight working variables 
a,b,c,d,e,f,g,h, it iclude 512 bits. The output of Dynamic SHA2-384 
include six working variables a,b,c,d,e,f, it iclude 384 bits.  

So the length of the final result of Dynamic SHA2-384 is 512, and 
the length of the output of Dynamic SHA2-384 are 384. The size of the 
space of final result of Dynamic SHA2-384 is , The size of the space 
of output of Dynamic SHA2-384 is . To given output 6-tuple(a’, b’, 
c’, d’, e’, f’), there exist 

5122
3842

128642 22 =×  2-tuple (g,h) that make 8-tuple (a’, b’, 



c’, d’, e’, f’, g, h) has same output 6-tuple(a’, b’, c’, d’, e’, f’). 
To a given output of Dynamic SHA2-384, there are  final result 

that has the given output. And the probability of find out a message that 
has the given final result is .  So the probability of find out a 
message that has the given given output is 

1282

5122−

384128512 222 =×− . 
 
4 Improvements 
There are some improvements for Dynamic SHA2: 
 
1. There is no any constant in Dynamic SHA2. Use constants will 
increase system security. 
 
2. In Keyed Hash function, the initial hash value is random variable to 
attacker. If Dynamic SHA2 is used in Keyed Hash function, by theorem 4, 
it is easy know that the probability of hash value is (resp. 

).  

2242−

2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash 
value, for example: cIVIV ii += −1 ,  is i-th initial hash value, c is 
constant and c is odd number. To do this, it need new communication 
protocol. 

iIV

 
3. If some algorithms that based on Arithmetic functions are developed to 
break Dynamic SHA2. The message expansions will increase the degree 
of the Arithmetic function that represents Dynamic SHA2. If the message 
expansions is data depend function, the degree of the Arithmetic function 
that represents the message expansions maybe be up to 512(resp.1024). It 
will increase the ability that resists differential analysis 

The message expansion maybe makes some hash values have more 
probability than other hash value. With improvement 2, all hash value 
will have same probability. 

An examlep as follow: 
Use a data-depend function as message expansion and the iterative 

part include four parts. The message expansion and the fourth iterative 
part as follow: 
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Table 4.1. message expansion for Dynamic SHA 
150 ≤≤ iwi  are message words and 3116 ≤≤ iwi  are message 

expansion words,, and the iterative part will include four part, the fourth 
iterative part as follow:  

2.4 The fourth iterative part 
For t=0 to 7 
{ 

),,,,,,,,,,,,,,,,(
),,,,,,,,,,,,,,,,(
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twwwwwwwwhgfedcbaCOMP
twwwwwwwwhgfedcbaCOMP  

} 
Table 4.2. the fourth iterative part for Dynamic SHA2 

There are up to  monomials in the ANFs and 
Arithmetic functions that represent message expansion. The degree of 
Arithmetic functions that represent message expansion is up to 
512(resp.1024). 

)2.(2 1024512 resp

 
5. Support of HMAC, randomized hashing function and 
Pseudo-random function 
Dynamic SHA2 can be used in different situation, such as: HMAC, 
randomized hashing function and Pseudo-random function. 



5.1 Support of HMAC 
5.1.1 Constitute HMAC with Dynamic SHA2 

If there is a hash function H(.), the size of message block is b. The 
definition of HMAC is: 

  ))||)((||)(()( MipadKHopadKHMHMAC ⊕⊕= ++

Where: 
ipad = 00110110...   repeat 0x36 64(resp.128) times. 
opad = 01011100…   repeat 0x5c 64(resp.128) times. 
K    = user key. 

+K    = pad (b-len(K)) ‘0’ to user key K.   len(K) is length of 
user key K. 

M    = message that input HMAC. 
||    = connection operation. 
 

From the definition of HMAC, it is known that it can use Dynamic 
SHA2-224/256/384/512 to constitute HMAC that produce 224(resp. 256, 
384, 512)-bit message authentication code.  

If the size of message block of hash function H is b, and the 
bit-length of hash value is n. The steps as follow: 

1. pad ‘0’ to the key K, and get the +K  that include b bits. 
2. let  and  +⊕= KipadSi

+⊕= KopadSo

3. get h1=H( ||M). M is message. iS

4. get HMAC=H( ||h1) oS

 
5.1.2 Security of HMAC 

Bellare, Canetti, R. and Krawczyk[BELL96a] had define 
( ε ,t,q,L)-weakly collision-resistant as follow: 

Definition 5.1: We say that a family of keyed hash functions f is 
( ε ,t,q,L)-weakly collision-resistant if any adversary that is not given 
the key k, is limited to spend total time t, and sees the values of the 
function Fk computed on q messages m1,m2,...,mq of its choice, each of 
length at most L, cannot find messages m and m’ for which Fk(m) = 
Fk(m’ ) with probability better than ε . 

 



Bellare, Canetti, R. and Krawczyk[BELL96a] had proved the 
theorem as follow: 

Theorem 5.1 If the keyed compression function f is an 
fε ,q,t,b)-secure MAC on messages of lengthbbits, and the keyed 

iterated hash F is ( Fε ,q,t,L)-weakly collision-resistant then the NMAC 
function is an ( Ff+ε ,q,t,L)-secure MAC. 

 
Because the attacker need at least (resp. , , ) 

different message to find collision of Dynamic SHA2. By theorem 5.1, it 
is known that if someone want to find collision of HMAC that 
constituted with Dynamic SHA2, he need (resp. , , ) 
different (message, MAC) that produced with same key. And the 
attacker has not the key, he can not produce these (message, MAC) 
off-line. On a 1 Gbit/sec communication link, one would need more than 

 seconds to process all the data required by such an attack. 

1122 1282 1922 5122
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5.2 Support of randomized hashing function 
5.2.1 randomized hashing function 

In  Draft NIST SP 800-106[17], Randomized Hashing function RF 
is as follow: 

RF(rv,m)=  ))(||M||F(r rvPLRvv ⊕

Where: 
RF         = Randomized Hashing function 
rv          = a random bit string that bit-length<1025 
m          = input message  
F          = hash function. 
M          = pad ‘1’ and some ‘0’ to m. 

1.if m longer than (|rv|-2), just pad ’1’.  
2. if m shorter than (|rv|-1), just pad ’1’ and 
some ‘0’ to make length M equal |rv|. 

Rv         =repeat rv some times, and truncated as |M| 
PL(rv)  = 16-bit binary string that describe the bit-length of rv 
|x|          = bit-length of x. 
||           = connection operation. 



 

 

1. rv is a random bit string that bit-length<1025, m is message. 

2. let rlen=|rv| 

3. if (|m|>(rlen-2)) then M1=m||’1’

4. if (|m|>(rlen-2)) then M1=m||’1’

5. if (|m|<(rlen-1)) then M1=m||’1’||’0’||…||’0’
rlen-|m|-1 

6. let Rv1= rv||…||rv 

|M|/rlen+1 

7. let Rv= Rv1 truncated as |M1|

8. let M=rv||(M1⊕  Rv) ||16bitlen(rv)

9. return M 

Table 5.1 function PM for Randomized Hashing function 

1. A = n.                       Comment: A is an integer. 
2. For (integer i = 15 down to 0) 

2.1 B = A mod 2.            Comment: B is an integer, 
2.2 If (B = 0), then   

bi  =  “0”.        Comment: bi is a single “0” bit. 
Else   

bi  = “1” .         Comment bi is a single “1” bit. 
        2.3 A =  ⎣ ⎦2/A

3. 16bit=b0||b1||…||b15; 
4. return 16bit; 

 
Table 5.2 function PL for Randomized Hashing function 

 
There exist two function PM anf PL as table 5.1 and 5.2 show. 
Function PM operate on a message m and a random bit string rv, 

produce a new message M. 
Function PL operate on an integer, produce a 16-bit bit string. 
From the definition of Randomized Hashing function, it is easy 



known that Dynamic SHA2 can be used function F in the definition. 
Dynamic SHA2 are used in Randomized Hashing function as follow: 

RF(rv,m)=F(PM(rv,m)), where F is Dynamic SHA2. 
 

5.2.2 Security of randomized hashing function 

 
If the randomized hashing function is constituted with hash function F. 
 

Then if someone have a message m1 and a random bit string rv1, 
then he can find (rv2,m2) that make RF(rv1,m1)= RF(rv2,m2) as table 
5.3 show(the bit order is started from 1.): 

1. set m2len is the length of the message m2 and r2len the length of 
the random bit string rv2. where r2len<1025. 

2. if m2len>r2len-2, 
2.1 find a (r2len+m2len+1) bit-length message m3 that make 

RF(rv1,m1)=F(m3||PL(r2len)). And the (r2len+m2len+1)-th 
bit of m3 b1 and the (((m2len+1) mod r2len)+1)-th bit of m3 
b2 satisfy the follow requirement: b1⊕b2=1. 

2.2 the first r2len bits is random bit string rv2. 

|m3|/r2len+2 

2.3. let Rv2= rv2||…||rv2

 
2.4 let Rv= Rv2 truncated as (m2len+r2len) 
2.5 let m3’= m3 Rv ⊕

2.6 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is 
m2. 

2.7 return m2 and rv2 
3. if m2len<r2len-1 

3.1 find a (r2len+r2len) bit-length message m3 that make 
RF(rv1,m1)=F(m3||PL(r2len)). And m3 satisfy the follow 
two requirement: 

3.1.A:  the (r2len+m2len+1)-th bit of m3 b1 and the 
(m2len+1)-th bit of m3 b2 satisfy the follow 
requirement: b1⊕b2=1. 

3.1.B: if m3=( ), then lenrbbb 2*221 ,...,,



( )=( ) lenrlenm bb 222 ,...,+ lenrlenrlenm bb 2*2222 ,...,++

3.2 the first r2len bit is random bit string rv 
3.3. let Rv= rv2||rv2 
3.4 let m3’= m3 Rv ⊕

3.5 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is 
m2. 

3.6 return m2 and rv2 
4. if not find message m3 that make RF(rv1,m1)=F(m3||PL(r2len)). 

Set the length of the message m2 and the length of the random bit string 
rv2. goto step 2. 

 
In this way to find a message m2 and a random bit string rv2 

(rv2,m2)≠(rv1,m1) that make RF(rv1,m1)= RF(rv2,m2), it need find the 
Preimages of hash function F or Second Preimages of hash function F. it 
is hard find Preimages or Second Preimages of Dynamic SHA2. The 
probability of finding Preimages or second preimages is (resp. 

, , ). 

2242−

2562− 3842− 5122−

 
5.3 Support of Pseudo-random function 

In section 10 of NIST SP 800-90[18], NIST has publish “Deterministic 
Rrandom Bit Generator(DRBG) Mechanisms Based on Hash Functions.”  
 
5.3.1 Support of HMAC based Pseudo-random function  
In section 10.1.2 of NIST SP 800-90[18], NIST has publish 
“HMAC_DRBG.”. It specify a construction of Pseudo-random function 
that base on HMAC. 

Here I specify a construction of Pseudo-random function based on 
the “HMAC_DRBG.” of NIST SP 800-90[18]. And the HMAC  
specified in setction 5.1 will de used in the construction of Pseudo- 
random function. 
 
5.3.1.1 Functions  
Three function are used in the construction of HMAC based 
Pseudo-random function. 



 
5.3.1.1.1 Function Updata(provided_data, K, V) 
Function Updata operate on three bit strings provided_data, K, V. and 

produce a new key K and a new string V. Function Updata as table 5.3 
show: 

1.  K=HMAC(K, V||0x00|| provided_data) 
2.  V=HMAC(K, V). 
3.  If (provided_data=NULL), then Return K, V 
4.  K=HMAC(K,V||0x01|| provided_data) 
5.  V= HMAC(K, V) 
6. Return K, V   

Table 5.3 Function Updata of HMAC-based Pseudo-random function 

 
5.3.1.1.2 Function Instantiate (entropy_input, nonce, 
personalization_string) 

Function Instantiate initialize some system parameters, when HMAC 
based Pseudo-random function start. 

Function Instantiate operate on three bit strings entropy_input, nonce, 
personalization_string.  

entropy_input is a string of bits obtained from the source of entropy 
input. 

nonce is a bit string. 
a.  An unpredictable value with at least 56 (resp. 128, 96, 
256) bits of entropy.  
b.  A value that is expected to repeat no more often than a 56 
(resp. 128, 96, 256)-bit random string would be expected to 
repeat. 

personalization_string is a string received from the consuming 
application.. 
Function Instantiate produce a key K , a string V and an integet 
reseed_counter . Function Instantiate as table 5.4 show: 
 
 
 



1.  seed_material = entropy_input || nonce || personalization_string.  
2.  K = 0x00 00...00.              Comment: outlen bits.  
3.  V = 0x01 01...01.              Comment: outlen bits.  

Comment: Update Key and V.  
4. (K, V) = Update (seed_material, K, V).  
5. reseed_counter = 1.  
6. Return K, V, reseed_counter  

Table 5.4 Function Instantiate of HMAC-based Pseudo-random function 

 
5.3.1.1.3 Function Reseed (V, K, reseed_counter, entropy_input, 
additional_input) 

If too many pseudo-random number were produced with same parameters, 
someone will have enouhg data to attack the system. So after produce 
some pseudo-random number, the system parameters must be reseted. 
HMAC based Pseudo-random function will reset system parameters after 
produce no more than  pseudo-random number.  482

The function of function Reseed is reset system parameters. Function 
Reseed operate on four bit strings V, K, entropy_input, additional_input 
and an integer reseed_counter.. Produce two new bit strings V, K, and an 
new integer reseed_counter. Function Reseed is as table 5.5 show: 
1.  seed_material = entropy_input || additional_input.  
2.  (K, V) = Update (seed_material, K, V).  
3.  reseed_counter = 1.  
4.  Return V, K, reseed_counter 

Table 5.5 Function Reseed of HMAC-based Pseudo-random function 

 
5.3.1.2 HMAC based Pseudo-random function 
When HMAC based Pseudo-random function start, system will call 
tunction Instantiate to initialize some system parameters. And then 
pseudo-random number will be produced as follow steps: 

1. If reseed_counter > , then return an indication that a reseed 
is required.  

482

2.  If requested_number_of_bits> , then return an signal that 
the requested_number_of_bits is error. 

192



3. If additional_input≠ Null, then (Key, V) = Update 
(additional_input, Key, V).  

4.  temp = Null.  
5. While (len (temp) < requested_number_of_bits) do:  

5.1  V = HMAC (Key, V).  
5.2  temp = temp || V.  

6.  returned_bits = Leftmost requested_number_of_bits of temp.  
7. (Key, V) = Update (additional_input, Key, V).  
8.  reseed_counter = reseed_counter + 1.  
9. Return returned_bits, and the new values of Key, V and 

reseed_counter. 
 
In the steps:  

reseed_counter is the number of pseudo-random number had been 
produced. 

additional_input is a  string received from the consuming 
application. 

Key is the key will be used in HMAC. 
V is the bit string will be hashed in HMAC. 
requested_number_of_bits is the number of bits of the 

pseudo-random numberwill be produced. 
requested_number_of_bits no bigger than . 352

returned_bits is the produced pseudo-random number. 
In the process of produce pseudo-random number, The values of V and 
Key are the critical values. So it must prevent from reveal the values of V 
and Key. 
 
5.3.1.3 Security of Pseudo-random function based HMAC 

In the Pseudo-random function based HMAC, the key and the 
‘message’ data V is protected. If someone attack the system, he must 
enough data that produced with same key, but in the Pseudo-random 
function based HMAC, the max number of the bits that produced with 
same key is , and every time the max number of bits requested is . 
The max number of bits that produced with same Key is . To 

352 192
541935 22 =+



find collision of HMAC that constituted with Dynamic SHA2, it need at 
least (resp. , , ) different (message, MAC) that produced 
with same key. So the attacker can not get enough (message, MAC) to 
find collision of HMAC that constituted with Dynamic SHA2. 

1122 1282 1922 5122

The attacker can test all (Key, V) to find the (Key, V) that is used, 
but the bit-length of Key and V is hash value of hash function. Then the 
bit-length of (Key, V) is 448224224 =+ (resp. , 

, ). 
512256256 =+

768384384 =+ 1024512512 =+

 
5.3.2 Support of non-HMAC based Pseudo-random function  
In section 10.1.1 of NIST SP 800-90[18], NIST has publish 
“Hash_DRBG”. It specify a construction of Pseudo-random function that 
not base on HMAC. 

Here I specify a construction of Pseudo-random function based on 
the “Hash_DRBG” of NIST SP 800-90[18]. 
 
5.3.2.1 Functions  
Four function are used in the construction of non-HMAC based 
Pseudo-random function 
 
5.3.2.1.1 Function Hash_df (input_string, no_of_bits_to_return) 
Function Hash_df operate on three bit strings input_string and an integer 

no_of_bits_to_return. And produce a string requested_bits.. Function 
Hash_df  as table 5.6 show: 

1.  temp = the Null string.  
2.  len=

outlen
returntobitofno ____  .  

3.  counter = 0x01 
4.  For i = 1 to len do  
Comment : In step 4.1, no_of_bits_to_return is used as a 32-bit string.  

4.1 temp=temp||Hash(counter||no_of_bits_to_return|| input_string).  
4.2 counter = counter + 1.  

5.  requested_bits = Leftmost (no_of_bits_to_return) of temp.  
6.  Return requested_bits 

Table 5.6 Function Hash_df of non-HMAC based Pseudo-random function 



The outlen in table 5.6 is the bit-length of the hash function. 
 
5.3.2.1.2 Function Instantiate (entropy_input, nonce, 
personalization_string) 

Function Instantiate initialize some system parameters, when HMAC 
based Pseudo-random function start. 

Function Instantiate operate on three bit strings entropy_input, nonce, 
personalization_string.  

entropy_input is a string of bits obtained from the source of entropy 
input. 

nonce is a bit string. nonce is either: 
a.  An unpredictable value with at least 56 (resp. 128, 96, 
256) bits of entropy.  
b.  A value that is expected to repeat no more often than a 56 
(resp. 128, 96, 256)-bit random string would be expected to 
repeat. 

personalization_string is a string received from the consuming 
application.. 

seedlen is a constant depend the hash function, 
if Dynamic SHA2-224/256  seedlen = 440 
if Dynamic SHA2-384/512  seedlen = 888 

Function Instantiate produce a key K , a string V and an integet 
reseed_counter . Function Instantiate as table 5.7 show: 
1.  seed_material = entropy_input || nonce || personalization_string.  
2.  seed = Hash_df (seed_material, seedlen).  
3.  V = seed.   
4.  C = Hash_df ((0x00 || V), seedlen).  
5.  reseed_counter = 1.  
6.  Return V, C, and reseed_counter  

Table 5.7 Function Instantiate of HMAC-based Pseudo-random function 

 
5.3.2.1.3 Function Reseed (V, K, reseed_counter, entropy_input, 
additional_input) 

If too many pseudo-random number were produced with same parameters, 



someone will have enouhg data to attack the system. So after produce 
some pseudo-random number, the system parameters must be reseted. 
HMAC based Pseudo-random function will reset system parameters after 
produce no more than  pseudo-random number.  482

The function of function Reseed is reset system parameters. Function 
Reseed operate on four bit strings V, K, entropy_input, additional_input 
and an integer reseed_counter. Prodece two bit strings V, K, and an new 
integer reseed_counter. Function Reseed is as table 5.8 show: 
1.  seed_material = 0x01 || V || entropy_input || additional_input.  
2.  seed = Hash_df (seed_material, seedlen).  
3.  V = seed.   
4.  C = Hash_df ((0x00 || V), seedlen).  Comment: Preceed with a byte 
of all zeros.  
5.  reseed_counter = 1.  
6. Return V, C, and reseed_counter. 

Table 5.8 Function Reseed of HMAC-based Pseudo-random function 

The seedlen in table 5.8 is a constant depend the hash function, 
if Dynamic SHA2-224/256  seedlen = 440 
if Dynamic SHA2-384/512  seedlen = 888 

 
5.3.2.1.4 Function  Hashgen (requested_number_of_bits, V) 
The function of function Hashgen operate on one bit strings V and an 
integer requested_number_of_bits. Prodece a bit strings returned_bits. 
Function Hashgen is as table 5.9 show: 

1.  m = 
outlen

returntobitofno ____ .  

2.  data = V.  
3.  W = the Null string.  
4. For i = 1 to m  

4.1 wi = Hash (data).  
4.2 W = W || wi.  
4.3 data = (data + 1) mod  .   seedlen2

5.  returned_bits = Leftmost (requested_no_of_bits) bits of W 
6. Return returned_bits. 

Table 5.9 Function Reseed of HMAC-based Pseudo-random function 



The seedlen in table 5.9 is a constant depend the hash function, 
if Dynamic SHA2-224/256  seedlen = 440 
if Dynamic SHA2-384/512  seedlen = 888 

5.3.2.2 non-HMAC based Pseudo-random function 
When non-HMAC based Pseudo-random function start, system will call 
tunction Instantiate to initialize some system parameters. And then 
pseudo-random number will be produced as follow steps: 

1. If reseed_counter > , then return an indication that a reseed 
is required.  

482

2.  If requested_number_of_bits> , then return an signal that 
the requested_number_of_bits is error. 

192

3.If additional_inpu≠Null, then do  
3.1 w = Hash (0x02 || V || additional_input).  
3.2 V = (V + w) mod   . seedlen2

4. (returned_bits)  = Hashgen (requested_number_of_bits, V).  
5.  H = Hash (0x03 || V).  
6.  V = (V + H + C + reseed_counter) mod   .  seedlen2

7.  reseed_counter = reseed_counter + 1.  
8. Return returned_bits, the new value of V, C, and reseed_counter  

 
In the steps:  

reseed_counter is the number of pseudo-random number had been 
produced. 

additional_input is a  string received from the consuming 
application. 

C  is seedlen bits that is updated during each call to the 
Pseudo-random function 

V  is seedlen bits that depends on the seed. 
requested_number_of_bits is the number of bits of the 

pseudo-random numberwill be produced. 
returned_bits is the produced pseudo-random number. 

 
In the process of produce pseudo-random number, The values of V and C 
are the critical values. So it must prevent from reveal the values of V and 



C. 
 
5.3.2.3 Security of non-HMAC based Pseudo-random function  
In the non-HMAC based Pseudo-random function, the string C and the 
‘message’ V is protected.  

If someone attack the system, he need know the the string C and the 
‘message’ V. The attacker can find the (C,V) that will produce the same 
Pseudo-random number he has. To do this, he need two successive 
(V1,V2), then he can calculate out the C, and test (C, V1), if the (C,V1) 
do not produce the same Pseudo-random number, the attacker had to find 
other (V1,V2) again. So the attacker must find Preimages of Dynamic 
SHA2 at first. The probability of random guess of finding 
512(resp.1024)-bit preimages of is (resp. , , ). The 
bie-length of V is (resp. ), even someone has an algorithm to find 
all messages that have same hash value of Dynamic SHA2, he had to find 
the V from (resp. , , ) messages. 

2242− 2562− 3842− 5122−

4402 8882

2162 1842 4962 3762

 
6 Security of Dynamic SHA2 with length extension attack and 
multicollision attack 
 
6.1 Security of Dynamic SHA2 with length extension attack 

length extension attack can be used to attack keyed-hash function. It 
make attacker can attacker keyed-hash function without the key. 

If there exist keyed-hash function H(K, M), where K is key, M is 
messahe, and h(hv0. m) is hash function of H(.), and Initial Hash Value of 
h(hv0. m) is hv0, message of h(hv0. m) is m. The length extension attack 
is as follow: 

Let pad(m) is pad ‘1’ , ‘0’ and the bit-length of message m as section 
2.3.1. 

If attacker have a pair (hv, M), Then attacker can find collision as 
follow step: 

1. Find a any bit string w,. 
2. Constitute new message M’=M||pad(M)||w. 
3. Calculate h(H(K,M),w). 



If attacker can find the w that make H(K,M)=h(H(K,M),w), he will 
find a collision that make H(K,M)= H(K,M’) without know the key K. 

In the attack step, we can find that attacker must find preimages of 
Dynamic SHA2. And the probability of random guess of finding 
preimages of is (resp. , , ). 2242− 2562− 3842− 5122−

 
6.2 Security of Dynamic SHA2 with multicollision attack 

Joux [19] has developed an algorithm to find a -way collision 
for a classical iterated hash function. If the probability of finding 
collision of a hash function is 

r2

ε . The probability of finding a -way 
collision for the hash function is . 

r2
rε

The probability of finding collision of Dynamic SHA2 is (resp. 
, , ). Then the probability of finding -way collision of 

Dynamic SHA2 is (resp. , , ). And the 
complexity of find a -way collision of Dynamic SHA2 is O(

1122−

1282− 1922− 2562− r2
r×−1122 r×−1282 r×−1922 r×−2562

r2 1122×r ) 
(resp. O( 1282×r ), O( 1922×r ), O( 2562×r )). 

 
7 Conclusions 

Ronald L Rivest[14] had designed RC5, RC5 include data-depend 
function, it make it hard to analyse RC5. And William Stallings[15] has 
mentioned that data-depend function will make cipher system nonlinear, 
and composite function of Boolean functions and Arithmetic functions 
also make cipher system nonlinear. Dynamic SHA2 carries out the two 
suggestions. 

Function G, R and data-depend ROTR operations divided the 
message space into many parts, in different part, the calculation is 
different.  

And based on components from the family SHA-2, I have 
introduced the principle in the design of Dynamic SHA2: When message 
is changed, the calculation will be different. And I bring in data depend 
function G, R and data-depend ROTR operations, and use bits in message 
as parameters of function G, R and and data-depend ROTR operations. 
These steps realize the principle. The principle enabled us to build a 
compression function of Dynamic SHA2 that has not new variable, the 



iterative part include three iterative parts, it is more robust and resistant 
against generic multi-block collision attacks, and it is resistant against 
generic length extension attacks. 
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Appendix 1: Constitute Boolean functions to represent function. 
We can use Algebraic Normal Form (ANF) to represent function. Gupta 
and Sarkar[13] have studied it. 
Let n≥r≥1 be integers and let  be a vector valued 
Boolean function. The vector valued function  can be represented as 
an r-tuple of Boolean functions , where 

, and the value of  equals the 
value of the s-th component of . The Boolean functions 

 can be expressed in the Algebraic Normal Form (ANF) 
as polynomials with n variables  of kind 

rnF }1,0{}1,0{: →

F

),...,,( )()2()1( rFFFF =

),...,2,1}(1,0{}1,0{:)( rsF ns =→ ),...,,( 21
)(

n
s xxxF

),...,,( 21 nxxxF

),...,,( 21
)(

n
s xxxF

nxxx ,...,, 21 ⊕⊕⊕⊕ nnxaxaa ...110  
, where nnnnnn xxxaxxaxxa ,...,,...... 21,...,2,11,1212,1 ⊕⊕⊕⊕⊕ −− }1,0{∈λa . Each ANF has 

up to  monomials, depending of the values of the coefficients .  n2 λa

 
 
Function R 
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer 
t and produces a word y as output, where wt <≤0 . So we have 

, It is easy to know that one-bit different in 
words x1,x2,x3,x4,x5,x6,x7,x8. Because the parameter of the rotate right 
operation is depend on message. With different message, different rotate 
right operation will be done. So the bit in output maybe changed.  

ww w

R }1,0{}1,0{: 2log8 →+×

So the ANFs to represent function R have up to  monomials, 
where  is bit length of the word. 

ww ××82

w
 

Function G 
Function G operates on six words x1,x2,x3 and an integer t and produces 
a word y as output, where 40 <≤ t . So we have . wwR }1,0{}1,0{: 23 →+×

If function G is not data depend function, the integer t is constant. 
When i-th bit in words x1,x2,x3 change, i-th bit in output maybe change. 
Then the ANFs to represent function R have up to  monomials. 32

If function G is not data depend function, the integer t is variable. It is 
easy to know that one-bit different in integer t, different logical will be 
called, every bit in output maybe change. One-bit different in words 
x1,x2,x3, a bit in output maybe change. Then the ANFs to represent 



function R have up to  monomials. 523 22 =+

 
Function R1 
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8 
and produces a word y as output. So we have , It is easy 
to know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will 
make the different rotate right operation be done. So the bit in output 
maybe changed. And when one-bit different in word x8, the bit in output 
maybe changed. So the ANFs to represent function R1 has up to  
monomials, where w is bit length of the word. 

wwR }1,0{}1,0{: 8 →×

w×82

 



Appendix 2: Constitute Arithmetic functions to represent 
function. 
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form 
(ANF) to represent function. In this way, all function will be represented 
as polynomials. 
 
In appendix 2, the following operations are used: 
1.  is absolute value of )(xabs x  
2. x  is round-off instruction on x  
3. “+” is arithmetic addition. 
4. “-” is arithmetic subtraction. 
5. “×” is arithmetic multiplication. 
 
1. Constitute Arithmetic functions to represent Boolean 
function: 
In Boolean function, 1 is True, 0 is False. 
 
1. one bit word.  
The Boolean function can represented with arithmetic functions as 
follow: 

operand function arithmetic 
function 

x,y yxz ⊕=  yxyxz ××−+= 2

x,y yxz ∧=  yxz ×=  
x,y yxz ∨=  yxyxz ×−+=  
x xz ¬=  xz −=1  

Tables B.1 represent Boolean function with arithmetic function 
To Boolean polynomial, it can replace every calculation of polynomial 
base on table B.1.  
 
2. n-bit word. 
If there are three n-bit words x, y, z. if there exist ),( yxfz =  where f is 
Boolean function that in table B.1. 
x, y, z are n-bit words. Let 
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where  is i-th bit of word x, y, z. There exists iii zyx ,, ),( iii yxfz = , where 
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table B.1 
for every bit of variables. 
 
3. If function F includes a series functions  as follow: 10,..., −tff
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Then it can represent function F as follow: 
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Base on above-mentioned three ways, it can represent Boolean function 
with arithmetic functions. And there exists: 
Theorem 2. In GF(2), there exists . 0>= kxxk

Proof. In GF(2), .  }1,0{∈x

If x=0,  xx kk === 00

If x=1,                                  □ xx kk === 11

 
2. Constitute Arithmetic functions to represent function with 
ANF 
Functions  can be expressed in the ANF as polynomials 
with n variables  of kind 

rnF }1,0{}1,0{: →

nxxx ,...,, 21

nnnnnnnn xxaxxaxxaxaxaa ............ 1,...,2,11,1212,1110 ⊕⊕⊕⊕⊕⊕⊕⊕ −− , where }1,0{∈λa . If replace 
every calculation in the ANF base on table B.1 and simplified by theorem 
2, it can constitute Arithmetic functions to represent ANF. The Arithmetic 
functions will be polynomials with n variables  of kind nxxx ,...,, 21

nnnnnnnn xxbxxbxbxbb ××++××++×++×+ −− ............ 1,...,2,11,1110 , where  are integer. The 
Arithmetic functions have up to  monomials. The degree of 
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Arithmetic functions is up to n. And there exists ∑−
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where f is r-bit word. 
 
3. Constitute Arithmetic functions to represent SHR operation: 
The shift right operation  can be represented as follow: )(xSHRk

)0.1(
2

)( k
k xxSHRy ==  

If operation  is not data-depend operation, the k in 
equation (1.0) is constant, and equation (1.0) is linear equation. The 
derivative function of linear equation is constant. 

)(xSHRy k=

If operation  is data-depend operation, the k in equation 
(1.0) is variable. And equation (1.0) will be exponential function with 
round-off instruction. It is hard to represent exponential function with 
linear equation.  

)(xSHRy k=

 
4. Constitute Arithmetic functions to represent data-depend 
function R: 
There are two ways to constitute Arithmetic functions to represent 
data-depend function R: 
1. Constitute ANFs that represent function R. And replace the Boolean 
function base on table B.1. In this way, it will constitute huge Arithmetic 
function. The ANFs represents function R has up to (resp. ) 
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the 
highest degree monomial of the Arithmetic function is ∏  (resp. 

), where  is i-th input bit. The degree of the Arithmetic function 
represents function R is up to 261(resp. 518). There exists: 

2612 5182

=

260

0i ix

∏=

517

0i ix ix

c
xdxdxd

yd

bni

bn

=
− )()....()....(

)(

10

 

where c is constant,  is i-th input bit of function R, bn is bit number of 
input, and bn equal 261(resp. 518).  

ix

 
2. At first, there exist rotate right (circular right shift) operation 

, where x is n-bit word, and )(xROTRk nk <≤0 . It can represent 
 as follow: )(xROTRy k=
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If function  is not data-depend function, the k in 
equation (1.1) is constant, and equation (1.1) is linear equation. The 
derivative function of linear equation is constant. This means the 
difference of function value depend on the difference of input, and the 
difference of function value dose not depend on the input. In SHA-2, the 
ROTR operation is not data-depend function, it can constitute linear 
equation to represent the ROTR operation in SHA2. 

)(xROTRy k=

If function  is data-depend function, the k in equation 
(1.1) is variable. And equation (1.1) will be exponential function with 
round-off instruction. It is hard to represent exponential function with 
linear equation. The derivative function of exponential function is 
exponential function. This means the difference of function value depend 
the difference of input and input. When the input changes, the different of 
function value maybe change. In Dynamic SHA2, function R is 
data-depend function. And if use equation (1.1) represents function R, the 
equation (1.1) will be complex exponential function. After several rounds, 
equation (1.1) will be iteration function with equation (1.1), it will be 
very huge and complex, and there exists no mathematical theory that 
reduces the size of equation (1.1). It is hard to analyses Dynamic SHA2 
that includes function R.  

)(xROTRy k=

 
5. Constitute Arithmetic functions to represent data-depend 
function G: 
By Theorem 2 and table B.1, function  can be represented as 
follow: 
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iii xxx 3,2,1  is i-th bit of x1, x2, x3. In system (1.2), it is known that  
are cubic equations. The degree of the Arithmetic function that represent 
function  is 3. And there are 7(resp. 5, 6) monomials in the 
Arithmetic function. 
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If function G is not data-depend function. It can look the equation 

(1.2) as cubic equations. It is hard to represented equation (1.2) with 
linear function. And there exists: 
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And c is constant. 
 

If function G is data-depend function, the function G will be represented 
with Arithmetic function as follow: 
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01, tt  is i-th bit of t. It is easy to known that the degree of the Arithmetic 

function that represent function  is 5. And there are 24 

monomials in the Arithmetic function. And there exists: 
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Compare equation (1.2) and equation (1.3), if function G is data-depend 
function, the degree of the Arithmetic function will be higher, and ther 
are more monomials in the Arithmetic function. This make it is harder to 
analyses Dynamic SHA2. 
 
6. Constitute Arithmetic functions to represent function R: 
There are two ways to constitute Arithmetic functions to represent 
data-depend function R: 
1. Constitute ANFs that represent function R. And replace the Boolean 
function base on table B.1. In this way, it will constitute huge Arithmetic 
function. The ANFs represents function R has up to (resp. ) 
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the 
degree of the Arithmetic function represents function R is up to 256(resp. 
512), and has up to (resp. ) monomials. There exiset: 
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where c is constant,  is i-th input bit of function R, bn is bit number of 
input, and bn equal 256(resp. 512). 
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2. At first, there exist rotate right (circular right shift) operation 
, where x is n-bit word, and )(xROTRk nk <≤0 . It can represent 

 as follow: )(xROTRy k=
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If function  is data-depend function, the k in equation 
(1.4) is variable, and equation (1.4) is exponential function. And equation 
(1.4) will be exponential function with round-off instruction. It is hard to 
represent exponential function with linear equation. The derivative 
function of exponential function is exponential function. This means the 
difference of function value depend the difference of input and input. 
When the input changes, the different of function value maybe change. In 
Dynamic SHA2, function R1 is data-depend function. And if use 
equation (1.4) represents function R1, the k is function of working 
variables a,b,c, d, e, f, g, and 

)(xROTRy k=

),,,,,,,( hgfedcbaKk =  as table B.2, the 
equation (1.4) will be complex exponential function. After several rounds, 
equation (1.4) will be iteration function with equation (1.4), it will be 
very huge and complex, and there exists no mathematical theory that 
reduces the size of equation (1.4). It is hard to analyses Dynamic SHA2 
that includes function R1.  
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Table B.2. function K for Dynamic SHA2 

Compare the Arithmetic function that represent SHA2, The Arithmetic 
function that represent functions in Dynamic SHA2 include exponential 
function. Or the Arithmetic function that represents functions in Dynamic 
SHA2 has higher degree than the Arithmetic function that represents 
functions in SHA2. This make it is harder to analyses Dynamic SHA2. 



Appendix 3: Function G and Function R and Function R1 
 
Let  is probability of )(xp x . 
 
1, Function G: 
Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an 
integer t, 30 ≤≤t . Function G use the integer t select a logical function 
from , , , . And y, x1, x2, x3 are w-bit word. So the bit-length 
of (x1,x2,x3,t) is 

0f 1f 2f 3f

23 +×w , the bit-length of y is w. 
 
To a given value y’=G(x1,x2,x3,t), there is  4-tuple (y’,x1,x2,t). To 
a given 4-tuple (y’,x1’,x2’, t’). There is the relation: 
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To given 4-tuple (y’,x1’,x2’,t’), it can compute the value for x3’. So there 
are  4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, x3, t are 
random and uncorrelated variable, there is: 
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If x1, x2, x3, t are random and uncorrelated, function G will produce 

random word and  wyp −=2)(

 
2, Function R: 
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words 
x1,x2,x3,x4,x5,x6, x7, x8 and an integer t. To a given value 
y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there is  9-tuple 
(y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’). To a given 9-tuple (y’,x1’,x2’,x3’,x4’, 
x5’, x6’, x7’,t’). There is the relation:  
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To given 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’), it can compute the 
value for x8, So there are  9-tuple 
(y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’) have the same value y’. 
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is: 
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If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R 
will produce random word and  wyp −=2)(

 
Function R1 
Function y=R1(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words 
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1, 
x2, x3, x4, x5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, x7, x8 
are random and uncorrelated. 
There exists:  
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To given value t0’, There is  7-tuple (x1’,x2’,x3’,x4’,x5’,x6’,x7’), 
There is relation: 

w×72

0)6)5)4)3)21(((((7 txxxxxxx ⊕+⊕+⊕+= . it can compute 
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and 
uncorrelated variable. There exists:  
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t0 is w-bit word, let t is -bit word, let: t0=( ) and 
t=( ),  is i-th bit of t0 and t, and there is  
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And there is relation: 
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x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t is 



produced from x1, x2, x3, x4, x5, x6, x7. To , there is 
relation . To a given value y’, there are w value t, to a 
given t’, it can compute the value for x8. And there is: 
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If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, 
function R1 will produce random word and . wyp −=2)(

 



Appendix 4: Some thing about Dynamic SHA2 
1. Why Dynamic SHA2 use function G , R and function R1 

The reason Dynamic SHA2 use function G, R and function R1 is: 
1. When the variables are random and uncorrelated, function G , R 

and R1 will produce random output. This makes the last hash 
values has close probability. 

2. Function G, R and R1 are data-depend function, it is hard to 
describe data-depend function with linear function, and it is hard 
to analyze data-depend function with differential analysis. The 
arithmetic function that describe function G, R and R1 is up to 5, 
261(resp. 518), 256(resp.512). And the ANFs that describe 
function G, R and R1 has up to 32, ,   
monomials.  

ww 2log82 +× w×82

 
2. It is hard analysis Dynamic SHA2 with linear function and 
differential analysis 

To analyze the relationship between message and hash value, it need 
the unchangeable formulas that represent hash function. And when 
message is changed, the calculation will be different. 

The ANFs that describe function R, R1 has up to   
monomials. 

ww 2log82 +× w×82

The degree of the arithmetic function that describe function R, R1 is 
up to 261(resp.518), 256(resp.512). Or it needs construction exponential 
function to describe function R, R1 and G.  

So it is hard analysis Dynamic SHA2 with linear function and 
differential analysis. 

 
3. Avalanche of Dynamic SHA2. 
After the first iterative part, all bits in message have been mixed. The 
second iterative part includes function R1. It is easy to know that one bit 
different in working variables a, b, c, d, e, f, g will lead to different 
ROTR operation been done. And after the second iterative part, every bit 
in working variables that before the second iterative part will affect all 
bits in working variables that after the second iterative part. 



Appendix 5: Spreading of Dynamic SHA  
To simplification, Let: 

1.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)), 
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15)) 
W(j) is the message word. 

2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). where a(i), b(i), c(i), 
d(i),e(i), f(i), g(i), h(i) are working variables at i-th function 
COMP called. 

3. 15i1hv(i)MW2)MW1,(hv(-1),H i ≤≤=  
4. Message word and working variables are b-bit words. 

From the definition of Dynamic SHA2, it is easy know that function 
COMP had been called sixteen times, when function COMP is called, 
MW1 or MW2 will be mixed. So it can describe Dynamic SHA2 as 
follow: 

 
 
 
 
 
 
 MW2 

MW2 

MW1 

MW1
hv(-1) hv(0) 

hv(1a)

hv(2) hv(15) 
MW2 ….

hv(1) The first 
iterative part 

The second 
iterative part 

The third 
iterative part 

 
Table E.1  data processing of Dynamic SHA2 

 
At first there are two theorems: 
 
Theorem 3:  
To function , there is: ),7,6,5,4,3,2,1,0,,,,,,,,( twwwwwwwwhgfedcbaCOMP

1.MW=(W0,W1,W2,W3,W4,W5,W6,W7), where W0,…,W7 are words that 
mixed. 
2. hva=(a0, b0, 0c, d0, e0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, h0 
are working variables that before call function COMP. 
3. hvb=(a1, b1, c1, d1, e1, f1, g1, h1). Where a1, b1, c1, d1,e1, f1, g1, h1 
are working variables that after call function COMP. 



working variables are b-bit word. hva, MW are random and 
uncorrelated. 

 
Then there exist: 

(1),p(hvb)=  
b×−82

(2),p(hvb|MW)=  
b×−82

(3),p(hvb|hva)=  
b×−82

 
Proof.  

The integer t in function COMP is decided by which round function 
COMP be. So the integer t can be look as constant. And we can use 
function ),( MWhvaFhvb =  describe function COMP. And we 
have . hva, MW are random and uncorrelated. So 
there exist p(hva)=  and p(MW)=  

bbF ×× → 816 }1,0{}1,0{:
b×−82 b×−82

 
There are  MW. To a given MW’, there exist: b×82

To a given hva’, from the definition of F, there is only a hvb 
that make )','( MWhvaFhvb = . 

And to a given hvb’, it can backward function F, and there is 
only a hva that make )',(' MWhvaFhvb =  . So there exist: 
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Table E.2. Relationship of hva, hvb 
(3) 
To given hva’, there exist: 
To a given hvb’, there is the relationship as table E.2, It is easy to 

compute the value for MW that make ),'(' MWhvaFhvb = . So there exist:  
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By theorem 3, to function COMP, it is easy to know that: 
To a given hva’, mix different message words MW, the hvb will be 

different. 
Mix given message words MW’, if the hva is different, the hvb will 

be different. 
 
 

Theorem 4. In Dynamic SHA2, there exist: 
(1) p(hv(j))=  b×−82
(2),p(hv(j)|MW1)=  

b×−82
(3),p(hv(j)|MW2)=  

b×−82
15,....,1=j  

 
Proof.  
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist: 

p(hv(-1)) =  b×−82
p(MW1) =   b×−82
p(MW2) = . b×−82

 
To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 
or MW2. 
 

To a given hv(i)’ 15,....,1=i , there are  2-tuple 
( MW1,MW2). 

b×162

To a given 2-tuple(hv(i)’,MW1’), there are  MW2. To a 
given 2-tuple (hv(i)’,MW2’), there are  MW1. 

b×82
b×82

To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward 
iterative steps, and it is easy to compute the value for hv(-1), and the 
hv(-1) make hv(i)')MW2',MW1'(hv(-1),H i =   .  

So there exist: 
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□ 
 
Theorem 5. In Dynamic SHA2, to a given hv(-1), there exist: 

p(hv(2)| (hv(-1),MW1))=  
b×−82

 
 
Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words 
MW1 or MW2. Let F2(hv(1))= hv(1a) is the second iterative part. 

Let F1(hv(1))=hv(1a). 
To a given 3-tuple (hv(2)’,hv(-1)’,MW1’). By theorem 3, there exist 

a 2-tuple (hv(0),hv(1a)) that make F(hv(-1)’,MW1’)=hv(0) and 
F(hv(1a),MW1’)=hv(2)’. 

To a given hv(1a)’, frome the   definition of the second iterative 

part , there exist a hv(1) that make F2(hv(1))=hv(1a)’. 

To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 3, there exist a MW2 
that make F(hv(0)’,MW2)=hv(1)’. 

So there exist: 
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□ 



By theorem 4 and 5, it is to know that: 
1. When hv(-1) is random variable, the probability of hash 

value is ,  b×−82
2. To a given hv(-1), the probability of different hash value 

maybe different.  
 

After first the second iterative part, the bits in message have been mixed, 
the mixed bits and working variables value are not uncorrelated, it is hard 
to analyze the probability of hash value. To get better property of 
spreading, Dynamic SHA2 adopt ways as follow: 

1. When the variable of function COMP is random value. Function 
COMP will produce random value. 


