
Preimage Attack on Blender

Florian Mendel

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.tugraz.at

Abstract. In this paper, we present a preimage attack on the hash
function Blender for all output sizes. It has a complexity of about n ·2n/2

and negligible memory requirements. The attack is based on structural
weaknesses in the design of the hash function and is independent of the
underlying compression function.

1 Description of Blender

The hash function Blender is an iterated hash function. It processes message
blocks of 32 (or 64) bits and produces a hash value of 224, 256 (or 384, 512)
bits. If the message length is not a multiple of 32 (or 64) bits, an unambiguous
padding method is applied. For the description of the padding method we refer
to [1]. Let W = W1‖W2‖ · · · ‖Wt be a t-block message (after padding). The hash
value h is computed form the chaining values Ai as follows (see Figure 1):

h = Σt+2
i=1Ai .

The chaining values Ai are computed as follows:

A0 = IV (1)
Ai = f(Ai−1,Wi) for 0 < i ≤ t (2)

At+1 = f(At, Σ1) (3)
At+2 = f(At+1, Σ2) , (4)

where Σ1 = ¬Σt
i=1Wi, Σ2 = Σt

i=1¬Wi and IV is a predefined initial value.

f f f ff

1

256

256

2 t 1 2

Fig. 1. Structure of the hash function Blender-256.



As can be seen in (3) and (4), Blender specifies two checksums (Σ1 and Σ2)
consisting of the modular addition of all message blocks, which are then input to
the two final application of the compression function. Computing this checksum
is not part of most commonly used hash functions such as MD5 and SHA-1.

The compression function f basically consist of 4 steps:

1. Compute the preliminary intermediate values using add-with-carry.
2. Compute the rotation factor r.
3. Rotate the intermediate values.
4. Compute the next state Ai.

For a detailed description of the Blender compression function we refer to [1],
since we do not need it for our analysis.

2 Preimage Attack

In this section, we present a preimage attack on the hash function Blender. It
has a complexity of about n · 2n/2 and negligible memory requirements. It is
based on the following two observations.

Observation 1 The checksums Σ1 and Σ2 are strongly related.

In other words, the second checksum does not increase the security of Blender.
This will be very useful for our attack. Let X = Σt

i=1Wi then:

Σ1 = ¬Σt
i=1Wi = ¬X

Σ2 = Σt
i=1¬Wi = Σt

i=1(−Wi − 1) = −t−Σt
i=1Wi = −t−X

Note that −Wi = ¬Wi + 1 and hence ¬Wi = −Wi − 1.

Observation 2 The final hash value h of Blender is computed from the chaining
values Ai by modular additions.

In other words, the computation of h is invertible. This will be very useful for
our attack. Assume, that we can find 2n messages w∗ (and hence chaining values
A∗i for 0 < i ≤ t), such that all produce the same value At and X, then we have
constructed a preimage for h.

Based on this short description, we will show now how to find messages w∗

which all produce the same value At and lead to the same checksum value with
a complexity of about n ·2n/2 and negligible memory requirements. For the sake
of simplicity let n = 256 for the remainder of this section. Note the the attack
works similar for the other output sizes of Blender.

Assume we want to construct a preimage for Blender-256 consisting of 1281
message blocks, i.e. m = W1‖W2‖ · · · ‖W1281. The attack basically consists of
two steps and uses multi-collisions. It can be summarized as follows.



2.1 STEP 1: Constructing the multicollision

A multicollision is a set of messages of equal length that all lead to the same hash
value. As shown in [2], constructing a 2t collision, i.e. 2t messages consisting of
t message blocks which all lead to the same chaining value, can be done with a
complexity of about t · 2n/2 for any iterated hash function.

In the attack we want to construct a 2256 collision for the iterative part
(chaining values), to get 2256 messages w∗ (and hence chaining values A∗i ) leading
to the same value At and X. This has a complexity of about 256 · 2144 = 2152.

However, in the case of Blender constructing a multicollision is slightly more
complicated. First, due to the small size of the message blocks (32 bits) we need
at least 4 message blocks to construct a collision in the chaining values. Second,
to ensure that Σ1 and Σ2 (respectively X = Σk

i=1Wi) are equal we need one
additional block. In detail, by using 5 message blocks we can construct a collision
in the iterative part (chaining values) and the checksums. Since for Blender-256
the chaining value has 256 bits and X has 32 bits, this hash a complexity of
about 2144 using a generic birthday attack.

However, due to the simple structure of the checksum value X, we can easily
guarantee that X collides by choosing the five message blocks carefully in the
attack. It can be summarized as follows:

1. Choose an arbitrary value for d.
2. For all 2128 choices of Wi, . . . ,Wi+3 adjust Wi+4 accordingly such that
Σi+4

j=iWj = d is fulfilled and compute Ai+4 with i > 0.
3. After computing all 2128 candidates for Ai+4 we expect to find a collision

due to the birthday paradox.

In other words, we can find a collision for the iterative part (chaining values) and
X with a complexity of about 2128 instead of 2144. Furthermore, the memory
requirements can significantly be reduced by applying a memory-less variant of
the birthday attack [3].

Hence, we can construct a 2256 collision with a complexity of about 256·2128 =
2136 and negligible memory requirements.

2.2 Constructing the preimage for h

In the previous step we constructed a 2256 collision in the first 5 · 256 = 1280
iterations of the hash function. Hence, we have 2256 messages w∗ leading to
the same chaining value A1280 and to a collision in X (and hence in the two
checksums Σ1 and Σ2).

Next we append an additional message block W1281 to w∗ such that the
padding of the messages m∗ = w∗‖W1281 are correct. It is easy to see that
appending one message block has no effect on the multicollision in the iterative
part and the checksums.

From this set of 2256 messages m∗ that all lead to the same chaining value
A1280 and X, we now have to find a message m∗ that leads to the the preimage



for h = h∗ +A1281 +A1282 +A1283. Note that we have 2256 candidates for:

h∗ = Σ256
i=1(Ari

5i−4 +Ari
5i−3 + · · ·+Ari

5i)

with ri ∈ {0, 1}. To find the correct one, and hence the message leading to the
preimage of h we use a meet-in-the-middle attack.

First, we save all values for

S1 = Σ128
i=1(Ari

5i−4 +Ari
5i−3 + · · ·+Ari

5i)

in the list L. Note that we have in total 2128 values for S1 in L. Second, we
compute

S2 = Σ256
i=129(Ari

5i−4 +Ari
5i−3 + · · ·+Ari

5i)

and check if h∗ − S2 is in the list L. After testing all 2128 values for S2, we
expect to find a matching entry in the list L and hence a message w∗ that
leads to h∗ = S1 + S2. This step of the attack has a complexity of 2128 and a
memory requirement of 2128. Once we have found w∗, we have found a preimage
for Blender-256 consisting of 1280+1 message blocks, namely m∗ = w∗‖W1281.
Note that the memory requirements of the attack can significantly be reduced
by applying a memory-less variant of the meet-in-the-middle attack introduced
by Quisquater and Delescaille in [3].

Hence, a preimage can be constructed for Blender-256 with a complexity of
2136 and negligible memory requirements. Note that similar attacks can be used
to find preimages for all output sizes of Blender.

3 Conclusion

In this paper, we presented a preimage attack on the hash function Blender for
all output sizes. The attack has a complexity of about n · 2n/2 and negligible
memory requirements. It is based on structural weaknesses in the design of the
hash function and is independent of the compression function f .

References

1. Colin Bradbury. BLENDER: A Proposed New Family of Cryptographic Hash Al-
gorithms. Submission to NIST, 2008.

2. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

3. Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision Search.
New Results and Applications to DES. In Gilles Brassard, editor, CRYPTO, volume
435 of LNCS, pages 408–413. Springer, 1989.


