The Twister Hash Function Family

www.twister-hash.com

October 28, 2008

Ewan Fleischmann*

Christian Forler ${ }^{\dagger}$ Michael Gorski ${ }^{\ddagger}$

[^0]
Executive Overview

The main advantages of the Twister hash function family are:

- portable to many platforms $8,32,64$ bit
- using well established and studied design concepts (MDS)
- security level can be expressed explicitly
- speed comparable with SHA-256 and SHA-512
- low memory requirements
- very fast for short message hashes
- very fast diffusion due to the MDS concept
- the initial value depends on the output size of the hash value

One of the most difficult tasks for cryptographer is to design a hash function which reaches a claimed security level by being fast as well. It is often only a trade of between security and speed. On the one hand, a hash function with a huge security margin offers a high level of security but might be useless for practical applications. On the other hand a very fast hash function might offer some unexploited weaknesses, while it is used for crucial applications.
We have learned from the AES competition that a well designed block cipher must serve the demand for speed while been easy to analyze without flaws or trapdoors inside.

TWISTER is a new family of cryptographic hash functions which we regard as an evolutional step from the AES process as well as from the latest research in the young field of cryptographic hash functions. The core of Twister consists of the well studied MDS concept known from the AES winner Rijndael. The biggest advantage of this construction is its simplicity and the well studied security analysis. This makes the Twister hash family very easy to analyze and we can even give some provable security claims.
Twister is defined for different internal state sizes and a variety of output sizes from 32 bits to 512 bits. This allows Twister to be a drop-in replacement for the entire SHA/SHA2 family of hash functions.

Contents

1 Introduction 7
1.1 Related Work. 7
1.2 Twister Hash Function Family 8
2 An Informal Description of Twister 9
2.1 The Compression Function 9
2.1.1 A Mini-Round 9
2.1.2 A Maxi-Round 10
2.1.3 Instances 11
2.2 The Output Function 12
3 Design Principles of Twister 13
3.1 Security 13
3.2 Evolutionary 13
3.3 Simplicity 14
3.4 Portability and Scalability 14
3.5 Analyzability 14
3.6 Speed 14
4 Specification: The Twister Hash Function Family 15
4.1 Twister Components 16
4.1.1 \quad State S 16
4.1.2 Checksum C 16
4.1.3 TwistCounter ϕ 16
4.1.4 Processed message counter hs_ProcessedMsgCounter 16
4.1.5 Unprocessed message hs_Data 17
4.1.6 Unprocessed message length hs_UnprocessedMsgCounter 17
4.2 The Compression Function 17
4.2.1 Mini-Round 18
4.2.2 Maxi-Round 21
4.3 Postprocessing 22
4.3.1 Padding 22
4.3.2 Twister state finalization 22
4.3.3 Message digest computation 22
4.4 The Init() - Function 23
4.5 The Update() - Function 23
4.6 The Final() - Function 24
4.7 Randomized Hashing 24
5 Security 27
5.1 Generic Attacks 27
5.2 On Collision Resistance 30
5.2.1 Properties of Twister 30
5.2.2 A Collision Attack Method on Twister 31
5.2.3 Pseudo Collisions on a Mini-Round 33
5.3 On (2nd) Pre-image Resistance 33
6 Implementational Aspects and Performance 35
6.1 Finite Field Multiplication 35
6.2 64-Bit Platforms 35
6.3 32-Bit Platforms 37
6.4 Specific Remarks for 8-Bit Platforms 37
6.5 Dedicated Hardware 37
6.5.1 Decomposition of the S-Box 38
6.6 Multiprocessor Platforms 38
6.7 Performance Measurements 38
6.7.1 Performance Measurement Results on 64-Bit Platforms 38
6.7.2 Performance Measurement Results on 32-Bit Platforms 39
6.7.3 Performance Estimates for 8-Bit Platforms 40
7 Legal Disclaimer 41
8 About the Authors 43
References 44
A How to find (good) MDS matrices 49
B The AES/Twister S-BOX 51
C Examples 53
C. 1 Twister-224 Examples 53
C. 2 Twister-256 Examples 54
C. 3 Twister-384 Examples 55
C. 4 Twister-512 Examples 56

1 Introduction

The National Institute of Standards and Technology (NIST) is conducting a competition which should lead to a new hash function standard. The new hash algorithm should replace the entire SHA-2 [20] family and therefore must provide message digests of size $224,256,384$ and 512 bits. The winner of the NIST hash function competition will define the new SHA-3 standard for hash functions.
One of the most used primitives in modern cryptography are hash functions. A hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is used to compute an n-bit fingerprint out of an arbitrarily-sized input. Established security requirements for cryptographic hash functions are collision-, pre-image and 2nd pre-image resistance - but ideally, cryptographers expect a good hash function to behave like a random function. Nearly all iterative hash functions are designed using the Merkle-DamgÅrd construction [17, 33]. A MerkleDAMGARD hash function is an iterated hash function that uses a fixed length compression function $C:\{0,1\}^{n_{c}} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n_{c}}$ where n_{c} is the size of the chaining value and m the size of a message block. We have $n=n_{c}$ for hash functions using the Merkle-Damgi̊rd construction. By assuming a padded message $M=\left(M_{1}, \ldots, M_{l}\right)$, $\left|M_{i}\right|=m, 1 \leq i \leq l$ and an internal chaining value $h_{i} \in\{0,1\}^{n_{c}}$ (h_{0} is called the initial value) the computation of the hash value for such a message M is as follows:

FOR i FROM 1 TO l do

$$
h_{i}=C\left(h_{i-1}, M_{i}\right)
$$

RETURN h_{l}
The main benefit of the Merkle-DamgÅd transformation is that it preserves collision resistance: if the compression function C is collision resistant, then so is the hash function. Unfortunately, this result does not extend to 2 nd pre-image resistance. Recent results highlight some intrinsic limitations of the MERKLE-DAMGARD approach. This includes being vulnerable to multicollision attacks [24], long second-pre-images attacks [26], and herding [25]. Even though the practical relevance of these attacks is unclear, they highlight some security issues which designers are well advised to avoid or take care of.

1.1 Related Work.

Most popular hash functions such as MD5 [40], SHA-0 [35] or SHA-1 [34] possess weaknesses in their design, leading to a huge amount of attacks $[6,7,12,19,39,42,43,44]$.

But also most new hash functions [23, 27, 28, 2] which try to take care for weaknesses in the Merkle-Damgård -construction itself were broken soon after their publications [31, 38, 37, 32, 22].
The concept of sponge functions [5] uses an a big internal state that absorbs a message of infinite length and that later squeezes out an hash value of variable size. RadioGatún [4] with XOR sponges and Grindahl [28] with truncate-overwrite sponges are the first hash function that use this framework. GRINDAHL was shown to be vulnerable to several attacks [37, 22].

1.2 Twister Hash Function Family

TWISTER is a family of hash functions with a large variety of output sizes. The minimum output size is 32 bits. In our implementation the output size growths in 32 bits steps up to 512 bits. We choose the 32 bits steps to cover up all SHA hash funtions.

Its internal state is 512 bit when the output size is smaller then 256 bit, else it is 1024 bit.

For all instances of Twister the internal state can be enlarged from output size n to $2 n, 3 n$ or $4 n$. This depends on the security requirements and the memory which is available on the desired platform. We developed a new design for the Twister hash function family which is different from the classical Merkle-DamgÅd design in many ways.

2 An Informal Description of Twister

In this section, we give a general description of the Twister hash function family and its building blocks. For a complete description of Twister, see the formal specifications in Section 4. Twister follows a very simple and clear design goal. It consists of an iterated compression function and of an output function.

2.1 The Compression Function

The compression function of Twister consists of building blocks called Mini-Rounds which are grouped into Maxi-Rounds. Each Mini-Round is a combination of well studied primitives, which are easy to analyze and fast to implement in software and hardware. The instances of the Twister hash function family differ only in their construction of a Maxi-Round. We will give an informal description of these principles below.

2.1.1 A Mini-Round

Mini-Round consists of the following primitives:

- Messagelnjection inserts a 64 -bit message block into the last row of the state matrix,
- SubBytes applies a non-linear S-Box table look up on each byte of the state matrix in parallel,
- AddTwistCounter XOR's a round dependent counter into the second column of the state matrix,
- ShiftRows rotates i by i positions to the left,
- MixColumns applies a linear diffusion on each column of the state matrix in parallel A visualization of a mini round is show in Figure 2.1

Figure 2.1: A Mini-Round

2.1.2 A Maxi-Round

A Maxi-Round contains between three and four Mini-Rounds and zero or one blank rounds. A blank round is a Mini-Round with no message input, which is equivalent to the all zero message block. Each Maxi-Round uses also a feed forward operation, i.e., the state before a Maxi-Round is feed forwarded with the state after a Maxi-Round. Figure 4.4 gives a high level description of a Maxi-Round.

Figure 2.2: A Maxi-Round

2.1.3 Instances

Now we give an informal description of the compression function of the TWISTER instances.

Twister-224 and Twister-256

The compression function of Twister-224 and Twister-256 consists of three Maxi-Rounds, where each of them contains three Mini-Rounds. The compression function is displayed in Figure 2.3. A zero indicates a blank round.

Figure 2.3: The compression function of Twister-224 and Twister-256

Twister-384 and Twister-512

The compression function of TwISTER-384 and Twister-512 consists of three Maxi-Rounds, where the first and the second Maxi-Round contains three Mini-Rounds each. The last Maxi-Round contains four Mini-Rounds. We show the compression function in Figure 2.4. Furthermore Twister-384 and Twister-512 contains a 512 -bit check sum which will be computed as follows. The check sum can be regarded as a 8×8 matrix of 16 byte entries. It is initialized with zero and updated before a message input takes place. Let $C[i]$ be the i-th column of the check sum and state $[i]$ be the i-th column of the state. Then the check sum is updated as $C[i]=C[i] \oplus$ state $[0] \boxplus C[i+1]$. Whenever a blank round takes place no update of the check sum is performed.

Figure 2.4: The compression function of Twister-384 and Twister-512

2.2 The Output Function

The Output-Round of Twister contains a global feed forwards as well as some Mini-Rounds depending on the size of the hash output. First a Mini-Round is applied on the state H_{i-1}, then the resulting state is XOR'ed with H_{i-1} another Mini-Rounds is applied which gives the state H_{i}. Let H_{f} be the final state after the last compression function call. A 64 -bit output stream out is then obtained by XORing the first column of H_{i} with the firs column of H_{f}. This procedure takes place until the needed amount of output bits are obtained. The last output stream can be varied between 32 bits and 64 bits by taking only the first half of out ${ }_{i}$. This allows to vary the output size for a huge amount of applications. Figure 2.5 gives a high level description of a Output-Round.

Figure 2.5: An Output-Round

3 Design Principles of Twister

In this section we exlain our design purpose and describe why Twister was designed as it is.

3.1 Security

The security of Twister is based on well studied concepts known from the AES [16]. The concept of MDS allows us to obtain a maximum of diffusion inside each column of the state matrix. Since the message input is orthogonal with the diffusion of the state, we allow a minimum of control on the state for an attacker. Introducing local feedforward as well as blank rounds (rounds with no message input) furthermore reduce the influence of an attacker on the state.

3.2 Evolutionary

During the last decade many hash function which uses a lot of different concepts. Even in some cases it turns out that hash functions which seem to be weak due to a fast break are even stronger than hash functions which were not broken so fast. But then it turns out that using newly developed techniques lead to stronger attacks which make pretended strong hash functions weak.
The Twister design is in some way evolutionary since we have learned from the AES process in many ways. The well studied and analyzed block ciphers that were in the final round of the competition lead to some well established design principles offering a high level of cryptographic knowledge. Rijndael [14] therefore can be seen as one of the most studied block ciphers during this process and also in the time after. Its concepts of simple byte-wise operations SubBytes, ShiftRows and MixColumns are well analyzed and it turns out that their combination can offer a high level of speed and security. We adopt some of these concepts for Twister and we also learn from resent hash function breakouts.

3.3 Simplicity

A strong hash function should not be hard to analyze, since if one cannot find an attack due to the algorithmic complexity does not mean that there is not simple attack which breaks the whole function in an easy way. We therefore only use very simple component which form our Mini-Round. These components are well studied and well known but combining these components to obtain a very good hash function is new. Our very simple design and clear structure of Twister makes cryptanalysis easy and serves the purpose that there are no simple attacks which cannot be found due to a complex and unreadable algorithm.

3.4 Portability and Scalability

A many design criteria of Twister is its use to a huge range of applications. Due to its byte-wise operations it scales perfect on $8,16,32$ and 64 -bit platforms. Twister can be applied on smart cards with small 8-bit processors very efficiently. We offer an optimized version for 32 -bit and 64 -bit environments. The portability will be enhanced by its low memory requirements, which makes Twister even for low end platforms valuable. For 32 and 64 -bit multi-core we offer a high speed parallel mode of operation which scales to reach the optimal level of processor usage.

3.5 Analyzability

Twister uses well known and well analyzed components inside its design. The security level of Twister can be proven for the inner components which is more worth than just a security claim. Using the concept of MDS lead to a very fast diffusing after just two input blocks. This high level of diffusion makes Twister very close to a randomized hash function which offers a hugh level of security by being fast as well.

3.6 Speed

Twister has not only a very high security level and is very fast as well. Compared with members of the SHA-2 family Twister is at least as fast on 32 and 64 -bit platforms. Our developed modes of operation leads to very fast hashes of hugh messages in a multicore environment. This makes a parallel implementation of Twister very fast and efficient. But, even short messages can be hash very fast with only few overhead.

4 Specification: The Twister Hash Function Family

In this section we present our hash function. We start off with a description of the general design strategy. The design is based on a blockcipher that is iterated using the DaviesMeyer (DM) mode of operation [9]. Twister is a byte-oriented framework that operates on a square state matrix. The building block of the blockcipher is called Mini-Round. It takes a sub portion of the message and processes it into the state \mathcal{S} whereas \mathcal{S} is a $N \times N$ byte-matrix, $N \in \mathbb{N}$. After two Mini-Rounds, the state is guaranteed to have full diffusion. Also, two subsequent iterations of the Mini-Round is can be proved to be collision free. See Section 5 for a detailed discussion on our security issues.

After processing the padded message (i.e. the message is completely absorbed by the state \mathcal{S}), the output follows. This technique follows the design ideas of the sponge function [5] by not presenting the complete internal state to the attacker at once but slice by slice.
The following notations are used in the following:

$\mathcal{S}=\left(S_{i, j}\right)_{1 \leq i, j \leq N}$	internal state matrix
$\mathcal{C}=\left(C_{i, j}\right)_{1 \leq i, j \leq N}$	internal checksum matrix
N	number of rows and columns of the internal state matrix size of unpadded message (in bits)
$m s g_{\text {size }}$	number of total Mini-Rounds per compression function $R_{\text {total }}$ $R_{m s g}$ m
number of N-byte blocks processed per compression function size of the padded message, measured in $N \cdot R_{m s g}$-byte blocks, i.e. the number of compression function calls needed to absorb the message into the state \mathcal{S}	
$M=\left(M_{1}, \ldots, M_{m}\right)$	padded message to be handled by the Twister hash function unpadded message size of the hash value measured in N-byte blocks, i.e.
$M_{\text {unpad }}$	out $=n /(8 \cdot N)$ sut
n	size of the hash value in bits, i.e. $n=$ out $\cdot 8 \cdot N$, where $n \leq(8 \cdot N)^{2}$
$H=\left(H_{1}, \ldots, H_{\text {out }}\right)$	number of N-byte blocks of the hash output TwistCounter
ϕ	

4.1 Twister Components

This section describes in detail the Twister components.

4.1.1 State S

TWISTER operats on a square state matrix $\mathcal{S}=\left(S_{i, j}\right), 1 \leq i, j \leq N$, consisting out of N rows and columns, where each cell $S_{i, j}$ represents one byte.

$S_{1,1}$	$S_{1,2}$	\ldots	$S_{1, N}$
$S_{2,1}$	$S_{2,2}$	\ldots	$S_{2, N}$
\vdots	\vdots	\ddots	\vdots
$S_{N, 1}$	$S_{N, 2}$	\ldots	$S_{N, N}$

Notation: $S_{(i \rightarrow)}:=\left(S_{i, 1}, \ldots, S_{i, N}\right)$ denotes the i-th row vector and $S_{(j \downarrow)}:=\left(S_{1, j}, \ldots, S_{N, j}\right)$ the j-th column vector.

4.1.2 Checksum C

The checksum enlarges the state of Twister-384 and Twister-512 to stick to our wide-pipe design [29] decision.

The checksum is as the srtate S a square checksum matrix $\mathcal{C}=\left(C_{i, j}\right), 1 \leq i, j \leq N$, consisting out of N rows and columns, where each cell $C_{i, j}$ represents one byte.

$C_{1,1}$	$C_{1,2}$	\ldots	$C_{1, N}$
$C_{2,1}$	$C_{2,2}$	\ldots	$C_{2, N}$
\vdots	\vdots	\ddots	\vdots
$C_{N, 1}$	$C_{N, 2}$	\ldots	$C_{N, N}$

4.1.3 TwistCounter ϕ

The TwistCounter ϕ is a unsigned 64 bit integer that is added and decreased within a Mini-Round to prevend slide attacks.

4.1.4 Processed message counter hs_ProcessedMsgCounter

Processed message length hs_ProcessedMsgCounter is a unsigned long long integer. The purpose of the counter is to compute the length of a hashed message.

4.1.5 Unprocessed message hs_Data

Unprocessed message bytes are stored inside a unsigned char array hs_Data. This array are filled up with data when the size of a message chunk is not divisible by 512 .

4.1.6 Unprocessed message length hs_UnprocessedMsgCounter

The number of unprocessed message bits are stored inside a integer UnprocessedMsgCounter.

4.2 The Compression Function

The Twister-hash function calls the compression function using the DM mode of operation. After the message is absorbed in the internal state the output function is called for every N bytes of output.
The compression function of Twister consists of building blocks called Mini-Rounds which are grouped into Maxi-Rounds. Each Mini-Round is a combination of well studied primitives, which are easy to analyze and fast to implement in software and hardware. The instances of the Twister hash function family differ only in their construction of a Maxi-Round.

The compression function takes a 512-bit block and processes them into the internal state matrix \mathcal{S}. As a Maxi-Round only indicates the position of the local feed forward XORoperation we will normally only discuss a compression function as a set of Mini-Rounds. The local feed-forward operation is an optional security feature and is discussed in Section 5. More general, the compression function works as follows. Let R be the number of Mini-Rounds in a compression function. (Note: In Figure 4.1 we have $R=9$.)

Twister-224 and Twister-256

The Twister-224 and Twister-256 compression function consists of three Maxi-Rounds. Each Maxi-Rounds is followd by a feed-forward XOR-operation. The first and second Maxi-Round consist of three Mini-Rounds. The last Maxi-Round consists of two Mini-Rounds and one blank round. Figure 4.1 illustrats the compression function.

Figure 4.1: The compression function of Twister-224 and Twister-256

The Twister-384 and Twister-512 compression function consists of three Maxi-Rounds, too. The first Maxi-Rounds consists of three Mini-Rounds. The second Maxi-Rounds consists of a Mini-Round followed by a blank round and an other Mini-Round. The last Maxi-Rounds consists of three Mini-Rounds followed by a blank round. Figure 4.2 illustrats the compression function.

Figure 4.2: The compression function of Twister-384 and Twister-512

4.2.1 Mini-Round

The Mini-Round is the underlying building-block of any Twister hash function. It's main purpose is to inject the message (Message-Injection) and to take care for the diffusion of the state matrix \mathcal{S}. It is visualized in Figure 4.3. Twister can handle at most 2^{64} Mini-Rounds. This limitation causes by the Add TwistCounter operation where a 64 counter is added. Each Mini-Round can process 64 bit of message data. Therefore, with a native usage of a Mini-Round it is possible to process up to $2^{64} \cdot 64$ message bits. If this limitation became in the future a real world issue it is possible to increase the size of the TwistCounter to 128 bit with almost no performance loss.

Figure 4.3: A Mini-Round

Message injection

A 64 bit message block m is inserted (via XOR \oplus) into the last row. By using the notation $m=(m[1], \ldots, m[N])$ whereas the length of $m[N]$ is one byte, and

$$
S_{(\rightarrow j)} \oplus m:=\left(S_{1, j} \oplus m[1], \ldots, S_{N, j} \oplus m[N]\right)
$$

we define the message injection process by

$$
S_{(\rightarrow 1)}=S_{(\rightarrow N)} \oplus m .
$$

Add TwistCounter

The TwistCounter ϕ is a unsigned 64 bit integer. The initial state is the maximum value (0xFFFFFFFFFFFFFFFF). By using the notation $\phi=(\phi[1], \ldots, \phi[N])$ whereas the
length of $\phi[N]$ is one byte, and $\phi[1]$ is the most significant byte of ϕ. The counter is added byte by byte - via the XOR operation - into the second column of the state \mathcal{S}.

$$
\left.S_{2, \downarrow} \oplus \phi:=S_{2,1} \oplus \phi[1], \ldots, S_{2, N} \oplus \phi[N]\right)
$$

We define the TwistCounter addition by

$$
S=S_{2, \downarrow} \oplus \phi
$$

After the additon ϕ is decreased by one.

SubBytes

The function is defined as an bijection

$$
\text { SubBytes }:\{0,1\}^{8} \longrightarrow\{0,1\}^{8}
$$

and is used as an S-box for each byte. It should, among other properties, be highly non-linear. A discussion on how to obtain such cryptographically strong S-Boxes (for 8x8 S-Boxes) can be found in [45]. Twister uses the well known and studied AES S-Box. The S-Box can be found in the Appendix B.
We define the SubBytes operation by

$$
S_{i, j}=S B\left(S_{i, j}\right) \quad \forall i, j
$$

ShiftRows

ShiftRows is a cyclic left shift similar to the ShiftRows operation of AES. It rotates row j by $(j-1) \bmod N$ bytes to the left.
We define the ShiftRows operation by

$$
S_{(i, j-1)}:=S_{(i, j)} \quad \forall i, j
$$

MixColumns

The MixColumn step is a permutation operation on the state. It applies a $N \times N$-MDS A (a maximum distance separable matrix as defined below) to each column, i.e. performs the operation $A \cdot S_{(j \downarrow)}$.

Definition An $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code with generator matrix

$$
G=\left[I_{k \times k} A_{k \times(n-k)}\right]
$$

is an MDS code if every square submatrix of A is nonsingular. The matrix A is called a MDS-matrix.

Our chosen MDS matrix is cyclic, i.e., its i-th row can be obtained by a cyclic right rotation of (0201010507080601) by i entries. It has a branch number of 9 meaning that if two 8 byte input vectors differ in $1 \leq k \leq 8$ bytes, the output of MixColumns differs in at least $9-k$ bytes. The 8×8-MDS matrix used for all proposed instances of Twister is:

$$
M D S=\left(\begin{array}{cccccccc}
02 & 01 & 01 & 05 & 07 & 08 & 06 & 01 \\
01 & 02 & 01 & 01 & 05 & 07 & 08 & 06 \\
06 & 01 & 02 & 01 & 01 & 05 & 07 & 08 \\
08 & 06 & 01 & 02 & 01 & 01 & 05 & 07 \\
07 & 08 & 06 & 01 & 02 & 01 & 01 & 05 \\
05 & 07 & 08 & 06 & 01 & 02 & 01 & 01 \\
01 & 05 & 07 & 08 & 06 & 01 & 02 & 01 \\
01 & 01 & 05 & 07 & 08 & 06 & 01 & 02
\end{array}\right)
$$

All of the byte entries are considered to be elements of $\mathbb{F}_{2^{8}}$. An element $\sum_{i=0}^{7} a_{i} x^{i} \in \mathbb{F}_{2^{8}}$ is represented by $\sum_{i=0}^{7} a_{i} 2^{i}$. The reduction polynomial $m(x)$ of $\mathbb{F}_{2^{8}}$ is defined as

$$
\begin{equation*}
m(x)=x^{8}+x^{6}+x^{3}+x^{2}+1 . \tag{4.1}
\end{equation*}
$$

Properties of MDS matrices/codes can be found e.g. in [30]. A discussion on how to obtain suitable MDS matrices can be found in Appendix A.

4.2.2 Maxi-Round

A Maxi-Round contains of several Mini-Rounds, blank round and a optional checksum updates. We defined a checksum update operation as

$$
C_{(i, \downarrow)}=C_{(i, \downarrow)} \oplus C_{(i+1, \downarrow)} \boxplus S_{(i, \downarrow)}
$$

Maxi-Rounds use also a feed forward operation where the state before a Maxi-Round S^{k} is feed forwarded with the state after a Maxi-Round S^{k+1}. We defined the feed forward operation as

$$
S_{(i, j)}:=S_{(i, j)}^{k} \oplus S_{(i, j)}^{k+1} \quad \forall i, j .
$$

Figure 4.4 illustrates a Maxi-Round.

Figure 4.4: A Maxi-Round

4.3 Postprocessing

This section describes the Twister finalization process. It starts when the message is completely over hand to the
Postprocessing shall take place after the message processed by the compression funtion.
This postprocessing consists of three steps:

1. Padding the message M
2. Twister state finalization
3. Message digest computation

4.3.1 Padding

The message, M, shall be padded before hash computation begins. The purpose of this padding is to ensure that the padded message is a multiple of 512 . Suppose that the length of the message, M is l bits then the message can divide in $n=l / 512512$ bit message blocks m_{1}, \ldots, m_{n} and one final message block m_{f} betweeen 0 and 511 bits. The 512 message blocks m_{1}, \ldots, m_{n} are processed by the compression function. The final message block m_{f} is padded by append a ' 1 ' to the end followed by $k=511-(l \bmod 512)$ zero bits. Afterwards the bitlength of m_{f} is 512 and it can processed by the compression function like all other message blocks bevor.

4.3.2 TWISTER state finalization

After the padding procedure the message length that is stored in a 64 unsigned integer is injected like a message by XOR it byte by byte to the last row of the state S. Afterwards the state is updated via a Mini-Round. the following steps depends on the hash value size. The finalization ends with a blank round for Twister-224 and Twister-256 or a Twister-256 compression function with the checksum state C as input for Twister384 and Twister-512. The checksum are transformed in a 64 byte message block m where $m=m[1], \ldots, m[n]$ column by column.

$$
\left.m[i]=C_{([i / 87, i}(\bmod 9)\right) \forall i=1, \ldots, 64
$$

4.3.3 Message digest computation

The Output-Round computs the message digest. It contains a global feed forwards as well as some Mini-Rounds depending on the size of the hash output. For every 64 message digest bits Mini-Round is applied on the state S, then the resulting state is XOR'ed with S^{k-1} another Mini-Rounds is applied which gives the state S^{k}. Let S^{f} be the final state after the last compression function call. A 64-bit output stream out ${ }_{i}$ is
then obtained by XORing the first column of S^{k} with the first column of S^{k-1}. This procedure takes place until the needed amount of message digest bits are obtained. The last output stream can be varied between 32 bits and 64 bits by taking only the first half of out ${ }_{i}$. This allows to vary the output size for a huge amount of applications. Figure 4.5 illustrates the Output-Round.

Figure 4.5: An Output-Round

4.4 The Init() - Function

The Init() function of Twister performs the the following steps:

1. Set the state to zero.
2. Copy the most significant byte of the output length to $S_{7,1}$ and the least significant byte to $S_{7,2}$. The output length is specified in bits and the maximum supported output length is 512 bit. Hence, the output length can be stored in two bytes.
3. The twist counter ϕ is initialized with $2^{64}-1$.
4. Set the checksum for Twister-384 and Twister-512 to zero.
5. Set the unprocessed message counter hs_Databitlen to zero.
6. Set the unprocessed message data hs_Data to zero.

4.5 The Update() - Function

The Update() function of Twister process data using the Twister compression function. It acts as follows:

1. Concatenate the unprocessed message hs_Data with the message M to the unprocessed message M^{\prime}.
2. Divide M^{\prime} in $k 512$ bit message blocks $m_{1}, \ldots m_{k}$ and a final message block m_{f} between 0 and 511 bits.
3. Call for every m_{i} for $i=0, \ldots, k$ the Twister compression function.
4. Add $512 \cdot k$ to the processed message counter hs_ProcessedMsgCounter.
5. Copy the value of m_{f} to hs_Data.
6. Set the unprocessed message counter hs_Databitlen to the bitlen of m_{f}.

4.6 The Final() - Function

The Finalize() function of Twister provides for the length padding of the message, processes all unprocessed data, hashes the message length, (process the checksum) and finally outputs the hash value. It acts as follows:

1. Concatenate a ' 1 ' bit to the unprocessed message data hs_Data.
2. Fill hs_Data up with ' 0 ' bits until the bit length is 512 .
3. Call the compression function for hs_Data.
4. Add the unprocessed message counter hs_Databitlen to the processed message counter hs_ProcessedMsgCounter.
5. XOR hs_ProcessedMsgCounter to the last row of the state $S_{(N, \rightarrow)}$.
6. Perform a Mini-Round.
7. Perform a blank round if the output hash length hs_Hashbitlen is less equal 256 bits.
8. Perform a Twister-256 compression function on the checksum state C when hs_Hashbitlen is between 256 and 512 bits.
9. Perform four times the Mini-Round for Twister-224 and Twister-256, six times for Twister-384 and eight times for Twister-512 to compute the message digest.

4.7 Randomized Hashing

Twister supports randomized hashing in the following way. One can chose a so called salt value of size at most 64 bits. If the salt is zero then the usual hash computation will be performed. For salt values not equal to zero and smaller than 64 -bit as many zero's will be padded such that a 64 -bit block occurs. The salt s will be introduced in the hash computation as a first input block followed by three blank rounds. This will prevent Twister to any chosen salt attacks.

One can try to mount the following attack scenario if the salt is inserted as the first input block without some blank rounds at the end. It might be more possible to transform a chosen-IV attack into a real attack if an attacker chooses salt values s and $s^{\prime} \neq s$ for the first two input blocks M_{0} and $M_{0}^{\prime} \neq M_{0}$ such that

$$
\operatorname{Mini}-\operatorname{Round}\left(\operatorname{Mini-Round}(I V, s), M_{0}\right)=\operatorname{Mini-Round}\left(\operatorname{Mini}-\operatorname{Round}\left(I V, s^{\prime}\right), M_{0}^{\prime}\right)
$$

Using at least two Mini-Rounds will lead to full diffusion 5.2.2 and will reduces an attacker's influence to generate different IV's. Therefore our randomized hashing schema is secure for two reasons. First, a salt value will not be introduced into the compression function, which leads not additional degrees of freedom for an attacker. Second, the degrees of freedom to choose the IV before the first input block are very low which gives no additional power to an attacker and does not lead to further attacks on a chosen salt.

5 Security

In this section we analyze the security of Twister and show that it is resistant to all known generic attacks.

5.1 Generic Attacks

Length-Extension Attacks. Given a hash function H based on a Merkle-Damgård construction. If one can find a collision for two messages M, M^{\prime} with $M \neq M^{\prime}$, such that $H(M)$ and $H\left(M^{\prime}\right)$ collide, then one can apply a length extension attack. For any message N one can easily produce a collision for $M \| N$ and $M^{\prime} \| N$ as $H(M \| N)=H\left(M^{\prime} \| N\right)$. Our padding rule avoids such type of attacks since we concatenate the length of the message to the message itself. Another attack can be as follows. For a known hash value $H(M)$ one can compute the hash value $H(M\|X\| N)$ for any suffix N, if the length of an unknown message M is known as well as the padding X of M. We prevent Twister to this kind of attack by two countermeasures: (i) By knowing only the hash value an attacker can not easily determine the state \mathcal{S} after the last compression function call as he has only access to the result of the final() function. This function squeezes out some bits of the state applying output transformation and squeezes out some bits again. The bits of a squeezing process do not leave enough information to recover the internal state. (ii) The multiple feed-forward does also prevent any attacker to successfully gain any knowledge of prior state information. In each squeezing process the one feed forward takes place.

Multi-Collision Attacks. Joux [24] found that when iterative hash functions are used, finding a set of 2^{k} messages all colliding on the same hash value (a 2^{k}-multi-collision) is as easy as finding k single collision for the hash function. Finding a collision in the compression function, i.e., a single block collision one can find k of such collisions each starting from the chaining value produced by the previous one-block collision. In other words, one have to find two messages blocks M_{i} and $M_{i}^{\prime} \neq M_{i}$ with $C\left(h_{i-1}, M_{i}\right)=$ $C\left(h_{i-1}, M_{i}^{\prime}\right)$, where $C(\cdot)$ represents the compression function and h_{i} the chaining value. Then it is possible to construct 2^{k} messages with the same hash value by choosing for block i either the message block M_{i} or M_{i}^{\prime}. Joux also showed that the concatenation of two different hash functions is not more secure against collision attacks than the strongest one. This attack can find 2^{k}-way internal multi-collisions with a complexity of $k \cdot 2^{n_{c} / 2}$. An instance of Twister fully resists the multi-collision attack if $8 \cdot N^{2} \geq 2 n_{c}$,
since the complexity is determined by $k \cdot 2^{\left(8 \cdot N^{2}\right) / 2}$. All instances of Twister have this feature, although the state of Twister-384 and Twister-512 is not big enough to prevent this attack alone, including the check sum can be viewed as an enlarging of the state, which then guarantees to prevent for this attack.

Herding Attacks. The herding attack [25] works as follows. An attacker takes 2^{k} chaining values which are fixed or randomly chosen. Then he chooses $O\left(2^{n_{c} / 2-k / 2}\right)$ message blocks. He computes the output of the compression function for each chaining value and each block. It is expected that for each chaining value there exists another chaining value, such that both collide to the same value. The attacker stores the message block that leads to such a collision in a table and repeats this process again with the newly found chaining values. Once the attacker has only one chaining value, it is used to compute the hash value to be published. To find a message whose chaining value is among the 2^{k} original values, the attacker has to perform $O\left(2^{n_{c}-k}\right)$ operations. For such a message the attacker can retrieve from the stored messages the message blocks that would lead to the desired hash value. The time complexity of this attack is about $O\left(2^{n_{c} / 2+k / 2}\right)$ operations for the first step and $O\left(2^{n_{c}-k}\right)$ operations for the second step. The whole attack on an n-bit hash function requires approximately $2^{\left(2 n_{c}-5\right) / 3}$ work. For TWISTER we have $n_{c}=8 \cdot N^{2}$ and with $8 \cdot N^{2} \geq\left(3 n_{c}+5\right) / 2$ the attack has the same complexity as for for a (second) pre-image attack on a random oracle. The complexity of this attack decreases with increased size of the message. If the message is of size about 2^{t}, then the complexity of the attack is $2^{\left(2 n_{c}-5\right) / 3-t}$. One has to choose N such that the hash function is protected against this kind of attack for a given upper bound. All of our proposed instances of TwISTER resist this kind of attack.

Long 2nd pre-image Attacks. Dean [18] found that fix-points in the compression function can be used for a second-pre-image attack against long messages in time $O\left(n_{c}\right.$. $2^{n_{c} / 2}$) and memory $O\left(n_{c} \cdot 2^{n_{c} / 2}\right.$), where $n_{c}=8 \cdot N^{2}$ is the size of the internal state (which is equal to the size of the hash output for a plain MERKLE-DAMGARD constructions). Kelsey and Schneier [26] extend this result and provide an attack to find a 2nd pre-image on a Merkle-DamgÅrd construction with Merkle-DamgÅrd strengthening much faster than the expected workload of $2^{n_{c}}$. The complexity of the attack is determined by the complexity of finding expandable messages. These are messages of varying sizes such that all these messages collide internally for a given IV. Expandable message can either be found using internal collisions or fixed points between a one-block message and an α-block message for varying values of α. The complexity of the generic attack to find a 2 nd pre-image for a 2^{k}-message block is about $k \cdot 2^{n_{c} / 2+1}+2^{n_{c}-k+1}$ compression function calls.

Long 2nd pre-image attacks in this form cannot be applied to the Twister framework for three reasons. First, we include the twist counter which does not allow to find expandable messages. Second, we make use of multiple feed-forwards and, third, the internal chaining value is in general much larger than n. This make it harder to find
collisions and fix points since we essentially have a constructions similar to the wide-pipe design [29].
Andreeva et al. [1] have shown that a combination of the attacks from [18, 26, 25] can be mounted to dithered hash functions, which gives the attacker more control on the second-pre-image, since he can choose about the first half of the message in an arbitrary way. This attack can be done in time $2^{n_{c} / 2+k / 2+2}+2^{n_{c}-k}$. Although it is more expensive than the attack of Kelsey and Schneier [26], it works even when an additional input to the compression function (dithering) is given. One have to make the dithering as huge as possible, such that there are no small cycles. Twister includes the twist counter ϕ which is very large, i.e., the twist counter is of size of the maximal message length. The larger this counter is the longer cycles we have, which increases the protection against this type of attack.

Slide Attacks. Slide attacks are common in block cipher cryptanalysis, but they also applicable to hash functions. Given a hash function H and two messages M and M^{\prime} where M is a prefix of M^{\prime}, one can find a slid pair of messages $\left(M, M^{\prime}\right)$ such that the the last message input block of the longer message M^{\prime} performs only an additional blank round, e.g. for sponge constructions. These two messages are then slid by one blank round. This attack allows to recover the internal state of a slid pair of messages an even backward computation as shown in [22]. The twist counter ϕ avoids the possibility of slide attacks, since XOR-ing a different value in each Mini-Round into the state matrix does not allow to find slid pairs of messages. Furthermore, the last inserted message block cannot be the all zero block due to the padding rules. Thus slide attacks are unavailable for Twister.

Differential Attacks. The essential idea of differntial attack on hash functions [11], as used to break MD5 and SHA-0/1, is to exploit a high-probability input/output differential over some component of the hash function, e.g. under the form of a "perturb-andcorrect" strategy for the latter functions, exploiting high probability linear/non-linear characteristics. In the design of the Twister framework, we applied the following countermeasures against differential attacks:

- High-Speed-Diffusion. The strong diffusion capabilities of the Mini-Round in combination with the non-linear S-Box make the exploit of linear approximations highly implausible. As it is impossible to find a collision after one Mini-Round, any attacker has to trail presumably very long paths to be able to find a collision.
- Nested feed-forward. The internal feed-forward operations aim at strengthening the function against differential paths.
- Optional internal wide-pipe. this makes internal collision unlikely, and the outputrounds make the differences much harder to predict in the hash value.
- Using different operators (e.g. \boxplus and \oplus) highly complicates the computation of good differential paths.

5.2 On Collision Resistance

Twister provides maximal diffusion after two rounds due to the chosen MDS matrix for MixColumns. If two input blocks differ in only one byte, then MC generates a difference in all message bytes of the column where the difference is inserted. The SR operation of the next round spreads the differences such that all columns contain at least one byte difference. Twister also prevent that the following inputs cancel these differences out, since they where inserted in different positions in each round.

Due to its very fast diffusion process (after two Mini-Rounds), near-collision are practically useless at the end of any compression function. To prevent collision attacks on the internal state in Twister-512 we choose to employ an extra Mini-Round after every "message-insertion" as we have chose to not have the same security margin as with Twister-256. As one can easily see, after a single Mini-Round one is not able to find a collision, i.e. any collision has to involve more that one Mini-Round. We claim a collision resistance of $\mathcal{O}\left(2^{\text {out } \cdot N \cdot 8}\right)$ if out $\leq N$ (as in Twister-256 and Twister-512).

5.2.1 Properties of Twister

We have designed Twister such that a single Mini-Round is proven to be collision free. This is expressed by the following lemma.

Lemma 5.2.1 From any state h_{i-1} one cannot find input message blocks $M, M^{\prime} \neq M$ such that

$$
\operatorname{Mini}-\operatorname{Round}\left(h_{i-1}, M\right)=\operatorname{Mini}-\operatorname{Round}\left(h_{i-1}, M^{\prime}\right)
$$

for all $M, M^{\prime} \neq M$.

Proof Assume that h_{i}^{M} is the state after inserting the message block M and $h_{i}^{M^{\prime}}$ is the state after inserting M^{\prime}. Then, if M and M^{\prime} are different in byte j the states h_{i}^{M} and $h_{i}^{M^{\prime}}$ are different in column j in at least $9-k$ bytes. This is due to the MDS property of our diffusion layer, which has a brach number of 9 .

We can also show that TwISTER offers full diffusion after two input blocks.

Lemma 5.2.2 Given an internal state h_{i-1} and two input blocks M_{1} and M_{1}^{\prime} where $M_{1} \neq M_{1}^{\prime}$. Then, we have full diffusion of the state after two Mini-Rounds.

Proof The message distribution process is visualized in Figure 5.1. Two messages M_{1} and $M_{1}^{\prime} \neq M_{1}$ are different in at least one byte. Due to the diffusion of MixColumns at

Figure 5.1: Visualization of the diffusion of a message after two Mini-Rounds
least one state column differs in 8 bytes. The ShiftRows of the following Mini-Round with no message input will distribute the all difference column into a one byte difference in each state column. After that MixColumns generates a difference in all state bytes. Which leaves to full diffusion.

5.2.2 A Collision Attack Method on Twister

The first step in finding a collision for any instance of the Twister hash family is to analyze a Mini-Round. We known from Lemma 5.2.1 that one cannot find a collision after one input block and we know from Lemma 5.2.2 that we have full diffusion of the state after two input blocks. Therefore we claim that an internal collision needs at least three applications of a Mini-Round, i.e., three input blocks. This can be verified by regarding the differential properties of MixColumns that are shown in Table 5.1.

$D_{I} D_{O}$	0	1	2	3	4	5	6	7	8
0	0	$-\infty$							
1	$-\infty$	0							
2	$-\infty$	-8	0						
3	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	-16	-8	0
4	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	-24	-16	-8	0
5	$-\infty$	$-\infty$	$-\infty$	$-\infty$	-32	-24	-16	-8	0
6	$-\infty$	$-\infty$	$-\infty$	-40	-32	-24	-16	-8	0
7	$-\infty$	$-\infty$	-48	-40	-32	-24	-16	-8	0
8	$-\infty$	-56	-48	-40	-32	-24	-16	-8	0

Table 5.1: Column Properties of the state matrix after multiplication with an MDS matrix. Approximate probability that two 8-byte input words with D_{I} different bytes on predefined positions maps to two 8-byte output words with D_{O} different bytes on predefined positions by the MixColumns operation. The values are base-2 logarithms.

We find the following lemma:

Lemma 5.2.3 Starting from an all zero internal state and inserting a one byte difference in the first input block, then at least 49 bytes are different after the second input round.

Proof A one byte input difference will cause an difference in a whole state column due to the MDS property of MixColumns. The next input difference can be chosen such that the last byte difference in the all difference state column will be canceled out. Thus, the state contains seven columns having 2 non-zero bytes and one all zero byte column after the following ShiftRows. Thus, at least seven bytes are non-zero when applying MixColumns in an column with two non-zero byte differences. Finally, the complete state matrix contains at least 49 non-zero bytes. A graphical representation is shown in Figure 5.2.2.

Lemma 5.2.4 i) Starting from an all difference internal state one needs at least two input rounds to obtain an all zero internal state. This occurs for random messages with probability 2^{-512}. ii) Any differential starting from an all zero internal state and ending in an all zero internal state needs at least three input rounds. iii) Such a three round differential occurs with probability 2^{-512}.

Proof i) By starting from an all difference internal state and inserting a any difference which does not cancel any state byte difference out we apply a first Mini-Round. Due to Table 5.1 MixColumns generates a non-zero difference in the last byte of a column and a zero difference in the remaining bytes with probability 2^{-56}. This occurs for eight columns with probability 2^{-448}. The input block in of the second round will cancel the difference in the first row out. This happens for a randomly chosen input block with

Input 1

Input 2

probability 2^{-64}. Thus, an all zero internal state occurs after at least two input rounds with probability 2^{-512}.
ii) If we insert a non-zero difference in all bytes of the first input block, the internal state after the first MixColumns is all different. The argument of i) then can be applied. iii) follows from i) and ii).

These lemmas show that we can compute lower bounds on the differential probabilities which are needed to find a collision.

5.2.3 Pseudo Collisions on a Mini-Round

It definitely would be easy to construct a collision of a Mini-Round by the following scenario. Choosing two states $I V_{1}$ and $I V_{2} \neq I V_{1}$ such that for a message block M_{i}

$$
\operatorname{Mini}-\operatorname{Rounds}\left(I V_{1}, M_{i}\right)=\operatorname{Mini-Rounds}\left(I V_{2}, M_{i}\right),
$$

holds. Such an attack would never lead to a collision of a Maxi-Round due to the local feedforward that captures a Maxi-Round. Thus, although pseudo collisions can easily be found for a Mini-Round it thus not lead to a collision of a Maxi-Round and thus also not leave to a collision in the compression function of Twister.

5.3 On (2nd) Pre-image Resistance

The Mini-Rounds are easily invertible as they are (after message injection) permutations. This is beneficial for collision-resistance but might lead to problems with (2nd) pre-image resistance. We care for this problem by applying feed-forward XORs with the internal state. So any attacker that tries to mount an pre-image attack has to recover the state from the hash value. For this, the attacker has to guess one bit for every hash output bit (this is due to the Output-function). Let $H=\left(h_{1}, \ldots, h_{\text {out } \cdot N}\right)$ be the hash output for hashing a message $M,\left|h_{i}\right|=1$ byte. Assume that an attacker tries to mount a (2nd) pre-image attack. In order to invert a Mini-Round, the attacker has to recover the entire internal state \mathcal{S}. As the attacker has only $1 / \mathrm{N}$-th of the internal state $\mathcal{S}_{(1, \downarrow)} \oplus \mathcal{T}_{(N, \downarrow)}$ he has to guess $\mathcal{T}_{(N, \downarrow)}$ in order to recover one colum $\mathcal{S}_{(1, \downarrow)}$ of \mathcal{S}. Furthermore, he has to
guess all of the other colums to be able to invert. The complexity for guessing essentially the whole matrix is $\mathcal{O}\left(2^{N \cdot 8}\right)$ so if we choose the output size of \cdot out $\cdot N \leq N \cdot N$ smaller than the size of the internal state no attacker has any signigicant advantage in finding a (2nd)-pre-image for any given hash value. Pre-images as well as (2nd) pre-images can be found if an attacker can easily compute fix points in at least one Maxi-Round. Due to the feed forward a fix point in a Mini-Round will not lead to a fix point in a Maxi-Round.

6 Implementational Aspects and Performance

In this chapter we discuss issues related to the implementation of Twister on different platforms. In essence, our techniques for implementing Twister rely on the following key sources of information:

- Optimization techniques given by Daemen and Rijmen in [16].
- Bernstein and Schwabe presented at Indocrypt 2008 (preliminary version available at [3]) some new techniques on how to reduce the number of instructions for an AES implementation.

Several of the discussed issues are relevant to more than one platform.

6.1 Finite Field Multiplication

In the algorithm of Twister there are no multiplications of two variables in $G F\left(2^{8}\right)$, but only the multiplications of a variable with a constant. The latter is easier to implement than the former - especially in the context of hardware and high-speed software implementations.

6.2 64-Bit Platforms

All the different steps for the round transformation can be combined in a single set of look-up tables, allowing for very fast implementations on processors with word lengths of 64 bits (or greater). We will use the following notations (for $1 \leq x, y \leq 8$):
$a_{y, x}$ input state matrix element at position (x, y),
$b_{y, x}$ state matrix element after $\operatorname{SubBytes}()$ at position (x, y),
$c_{y, x}$ state matrix element after $\operatorname{ShiftRows}()$ at position (x, y),
$d_{y, x}$ state matrix element after MixColumns() at position (x, y).

After the MixColumn-Operation, we have for $1 \leq j \leq 8$:

$$
\left[\begin{array}{c}
d_{0, j} \\
d_{1, j} \\
d_{2, j} \\
d_{3, j} \\
d_{4, j} \\
d_{5, j} \\
d_{6, j} \\
d_{7, j}
\end{array}\right]=\left[\begin{array}{llllllll}
02 & 01 & 01 & 05 & 07 & 08 & 06 & 01 \\
01 & 02 & 01 & 01 & 05 & 07 & 08 & 06 \\
06 & 01 & 02 & 01 & 01 & 05 & 07 & 08 \\
08 & 06 & 01 & 02 & 01 & 01 & 05 & 07 \\
07 & 08 & 06 & 01 & 02 & 01 & 01 & 05 \\
05 & 07 & 08 & 06 & 01 & 02 & 01 & 01 \\
01 & 05 & 07 & 08 & 06 & 01 & 02 & 01 \\
01 & 01 & 05 & 07 & 08 & 06 & 01 & 02
\end{array}\right] \times\left[\begin{array}{c}
S\left[a_{0, j}\right] \\
S\left[a_{1, j+1 \text { mod } 8}\right] \\
S\left[a_{2, j+2 \text { mod } 8}\right] \\
S\left[a_{3, j+3 \text { mod } 8}\right] \\
S\left[a_{4, j+4 \text { mod } 8}\right] \\
S\left[a_{5, j+5 \text { mod } 8}\right] \\
S\left[a_{6, j+6 \text { mod } 8}\right] \\
S\left[a_{7, j+7 \text { mod } 8}\right]
\end{array}\right]
$$

where $S:\{0,1\}^{8} \longrightarrow\{0,1\}^{8}$ denotes the S-Box operation.
The matrix multiplication can be interpreted as a linear combination of all eight column vectors:

$$
\left[\begin{array}{c}
d_{0, j} \\
d_{1, j} \\
d_{2, j} \\
d_{3, j} \\
d_{4, j} \\
d_{5, j} \\
d_{6, j} \\
d_{7, j}
\end{array}\right]=\left[\begin{array}{c}
02 \\
01 \\
06 \\
08 \\
07 \\
05 \\
01 \\
01
\end{array}\right] S\left[a_{0, j}\right] \oplus\left[\begin{array}{c}
01 \\
02 \\
01 \\
06 \\
08 \\
07 \\
05 \\
01
\end{array}\right] S\left[a_{0, j}\right] \oplus \ldots \oplus\left[\begin{array}{c}
01 \\
06 \\
08 \\
07 \\
05 \\
01 \\
01 \\
02
\end{array}\right] S\left[a_{0, j+7 \bmod 8}\right]
$$

We define now eight T-tables: $T_{0}, T_{1}, \ldots, T_{7}$:

$$
\begin{aligned}
& T_{0}[\alpha]=\left[\begin{array}{l}
02 \\
01 \\
06 \\
08 \\
07 \\
05 \\
01 \\
01
\end{array}\right] S[\alpha], \quad T_{1}[\alpha]=\left[\begin{array}{l}
02 \\
01 \\
06 \\
08 \\
07 \\
05 \\
01 \\
01
\end{array}\right] S[\alpha] \quad \ldots \quad T_{7}[\alpha]=\left[\begin{array}{c}
01 \\
06 \\
08 \\
07 \\
05 \\
01 \\
01 \\
02
\end{array}\right] S[\alpha] . \\
& {\left[\begin{array}{c}
d_{0, j} \\
d_{1, j} \\
d_{2, j} \\
d_{3, j} \\
d_{4, j} \\
d_{5, j} \\
d_{6, j} \\
d_{7, j}
\end{array}\right]=T_{0}\left[a_{0}, j \bmod 8\right] \oplus T_{1}\left[a_{1}, j+1 \bmod 8\right] \oplus T_{1}\left[a_{1}, j+2 \bmod 8\right] \oplus \ldots} \\
&
\end{aligned}
$$

All operations are 64-bit XOR operations that can be implemented quite efficiently on 64-bit platforms.

6.3 32-Bit Platforms

By splitting the 64 -bit look-up tables T_{0}, \ldots, T_{7} into 32 -bit chunks we take presumably about twice the time for a Mini-Round as compared to the 64-bit implementation, i.e. the speed linearly scales down with the bandwidth available on a specific platform.

6.4 Specific Remarks for 8-Bit Platforms

The performance on 8 -bit processors is an important issues, since most smart cards have such a processor and many cryptographic applications run on smart cards. There are several options for implementing Twister, depending on whether the requirements demand for minimum space (i.e. low possibility for storing lookup-tables) or maximum speed. If minimum space is requested, the multiplication of two elements in $G F\left(2^{8}\right)$ has to be performed in software and could not be stored as a lookup table. Specific details for such issues can be found in [16, Chapter 4.1.1]. If space limitations is not an issue, the technique for implementing Twister via lookup-tables should be chosen as was discussed in section 6.2. As nearly all of the operations scale linearly down (i.e. a 64 -bit XOR can be easily implemented via 8 times an 8 -bit XOR) we simply have the running time of $8 \times$ running time on 64 -bit.

6.5 Dedicated Hardware

Twister is suited to be implemented in dedicated hardware. There are several tradeoffs between chip area and speed possible. Because the implementation in software on general-purpose processors is already very fast, the need for hardware implementation will very probably be limited to very specific cases like:

1. Extreme high-speed chips with no area restrictions: the T-tables can be hardwired and the XOR operations can be conducted in parallel.
2. Compact coprocessors on smart cards, there can either be only the S-Box hardwired or, additionally (and if enough memory is available) the T-tables generated at runtime.
3. If there is essentially no space to hardwire anything, even the S-Box can generated at runtime.

6.5.1 Decomposition of the S-Box

As we use the Rijndael S-Box, we can assemble it using two transformations:

$$
S[\alpha]=f(g(\alpha))
$$

where $g(\alpha)$ is the transformation

$$
\alpha \rightarrow \alpha^{-1} \text { in } G F\left(2^{8}\right)
$$

and $f(\alpha)$ is an affine transformation.
The problem of designing efficient circuits for inversion in finite field has been studien extensively before; e.g. by C. Paar and M. Rosner in [36] or, for a short summary, in [16].

6.6 Multiprocessor Platforms

There is considerable parallelism possible. If look-up tables are used, all table lookups can be done in parallel. The XOR operations can be done mostly in parallel as well. But the limiting factor for Twister implementations is likely to be the number of memory references that can be done per cycle, rendering the inner parallelism somewhat nonproductive.

6.7 Performance Measurements

6.7.1 Performance Measurement Results on 64 -Bit Platforms

Twister was especially designed with 64 -platforms in mind by making it possible to aggregate 8 times an 8-bit table lookup into one single 64-bit table lookup. The following performance measurements were conducted on:

Processor: Core2Duo T7300
Clock Speed: 2000 MHz
Memory: 2048 MB
Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64
Compiler: GCC 4.3, Optimization settings: -Os
For comparison, performance measurement results for SHA2 on the this platform are given.

SHA-256: total 20.1 clock cycles per byte
SHA-512: total 13.1 clock cycles per byte

For Twister we have the following performance results:
Twister-224
Setup: negligible
Generation of Message Digest: 15.8 cycles per byte

Twister-256
Setup: negligible
Generation of Message Digest: 15.8 cycles per byte

Twister-384
Setup: negligible
Generation of Message Digest: 17.5 cycles per byte

Twister-512
Setup: negligible
Generation of Message Digest: 17.5 cycles per byte

6.7.2 Performance Measurement Results on 32-Bit Platforms

Processor: Core2Duo T7300
Clock Speed: 2000 MHz
Memory: 2048 MB
Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64
Compiler: GCC 4.1, Optimization settings: -Os
For comparison, performance measurement results for SHA2 on the this platform are given.

SHA-256: total 29.3 clock cycles per byte
SHA-512: total 55.2 clock cycles per byte
For Twister we have the following performance results:
Twister-224
Setup: negligible
Generation of Message Digest: 35.8 cycles per byte

Twister-256
Setup: negligible
Generation of Message Digest: 35.8 cycles per byte

Twister-384

Setup: negligible
Generation of Message Digest: 39.6 cycles per byte

Twister-512

Setup: negligible
Generation of Message Digest: 39.6 cycles per byte

6.7.3 Performance Estimates for 8 -Bit Platforms

As Twister nearly linearly scales down on low-end platforms we expect (assuming the same technical background) that Twister has approximately the following performance on 8 -bit platforms. We assuem that all the T-tables are precomputed and available on the platform.

Twister-224
Setup: negligible
Generation of Message Digest: 200 cycles per byte

Twister-256
Setup: negligible
Generation of Message Digest: 200 cycles per byte

Twister-384
Setup: negligible
Generation of Message Digest: 220 cycles per byte

Twister-512

Setup: negligible
Generation of Message Digest: 220 cycles per byte
This (downward) scalability is largely due to the fact that a 64 -bit XOR operation can be implemented using eight 8 -bit XOR operations.

7 Legal Disclaimer

To the best of our knowledge, the Twister hash function is not encumbered by any patents. We have not, and will not, apply for patents on anything in this document, and we are unaware of any other patents or patent filings that cover this work. The example source code - and all other code on the Twister website www.twister-hash.com - is in the public domain and can be freely used.

We make this submission to NIST's hash function competition solely as individuals. Our respective employers neither endorse nor condemn this submission.

8 About the Authors

The Twister team consists of young, dynamic and high motivated PhD students which are working all on topics of symmetric cryptography, especially on hash functions design and cryptanalysis. Our team consists of researcher that are experts in theory and also in practice.

Bibliography

[1] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. Second Preimage Attacks on Dithered Hash Functions. In Smart [41], pages 270-288.
[2] Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. The Hash Function Family LAKE. In FSE, page inproceeding, 2008.
[3] Daniel J. Bernstein and Peter Schwabe. New AES software speed records. Cryptology ePrint Archive, Report 2008/381, 2008. http://eprint.iacr.org/.
[4] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun, a belt-and-mill hash function. Presented at Second Cryptographic Hash Workshop, Santa Barbara (August 24-25, 2006), 2006. See http://radiogatun.noekeon. org/.
[5] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge Functions. Ecrypt Hash Workshop, 2007. See http://gva.noekeon.org/papers/ bdpv07.html.
[6] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Franklin [21], pages 290305.
[7] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Cramer [13], pages 36-57.
[8] Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of Lecture Notes in Computer Science. Springer, 2007.
[9] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions from pgv. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 320-335. Springer, 2002.
[10] Gilles Brassard, editor. Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer, 1990.
[11] Christophe De Cannière and Christian Rechberger. Finding sha-1 characteristics: General results and applications. In Xuejia Lai and Kefei Chen, editors, ASI-

ACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 1-20. Springer, 2006.
[12] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 56-71. Springer, 1998.
[13] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.
[14] J. Daemen and V. Rijmen. AES Proposal: Rijndael. NIST AES Homepage: http: //csrc.nist.gov/encryption/aes/round2/r2algs.htm, 1999.
[15] Joan Daemen and Vincent Rijmen. The design of rijndael: AES - the advanced encryption standard, 2002.
[16] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, 2002.
[17] Ivan Damgård. A Design Principle for Hash Functions. In Brassard [10], pages 416-427.
[18] Richared D. Deam. Formal Aspects of Mobile Code Security. Ph.D. dissertation, Princeton University, 1999.
[19] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253-271, 1998.
[20] FIPS. Secure Hash Standard. National Institute for Standards and Technology, Gaithersburg, MD 20899-8900, USA, August 2002.
[21] Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, California, USA, August 1519, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science. Springer, 2004.
[22] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide Attacks on Hash Functions. In ASIACRYPT, pages $143-160,2008$.
[23] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie Hong, Jaesang Lee, Dukjae Moon, and Sungtaek Chee. A New Dedicated 256-Bit Hash Function: FORK-256. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 195-209. Springer, 2006.
[24] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Franklin [21], pages 306-316.
[25] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 183-200. Springer, 2006.
[26] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for

Much Less than 2^{n} Work. In Cramer [13], pages 474-490.
[27] Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 228-242. Springer, 2005.
[28] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl Hash Functions. In Biryukov [8], pages 39-57.
[29] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages 474-494. Springer, 2005.
[30] F. I. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, 1977.
[31] Krystian Matusiewicz, Thomas Peyrin, Olivier Billet, Scott Contini, and Josef Pieprzyk. Cryptanalysis of FORK-256. In Biryukov [8], pages 19-38.
[32] Florian Mendel and Martin Schläffer. Collisions for Round-Reduced LAKE. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP, volume 5107 of Lecture Notes in Computer Science, pages 267-281. Springer, 2008.
[33] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [10], pages 428-446.
[34] National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. April 1995. See http://csrc.nist.gov.
[35] National Institute of Standards and Technology. FIPS 180: Secure Hash Standard. 1993. See http://csrc.nist.gov.
[36] Christof Paar and Martin Rosner. Comparison of arithmetic architectures for reedsolomon decoders in reconfigurable hardware. In FCCM, pages 219-225. IEEE Computer Society, 1997.
[37] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT, pages 551-567, 2007.
[38] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Breaking a New Hash Function Design Strategy Called SMASH. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages 233-244. Springer, 2005.
[39] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 58-71. Springer, 2005.
[40] R. Rivest. The MD5 Message-Digest Algorithm, 1992.
[41] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science. Springer, 2008.
[42] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In Cramer [13], pages 1-18.
[43] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17-36. Springer, 2005.
[44] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer [13], pages 19-35.
[45] Xun Yi, Shi Xing Cheng, Xiao Hu You, and Kwok Yan Lam. A Method for Obtaining Cryptographically Strong 8x8 S-boxes. In IEEE Global Telecommunications Conference, GLOBECOM 97, Volume 2, pages 689-693, 1997.

A How to find (good) MDS matrices

The common way for finding MDS matrices is to use a generator matrix $G=\left(I_{k} A\right)$ of a Reed-Solomon code and take a sub matrix of A. This approach is deterministic and does always give a MDS matrix of the desired size (assuming that the size is not to big for MDS matrices over \mathbb{F}_{256}). Another way is to create random matrices and check for the desired properties. This way, we found the MDS-matrix which is given in section 4.2.1. Our MDS-finder (see our website on www.twister-hash.com algorithm favors MDS-matrices that have the following properties that lead to less working-memory requirements for look-up tables, higher speed (a multiplication by one is and addition) and better hardware performance (cyclicity) [15]:

- 'low' value of the entries especially as much values being ' 1 ' as possible,
- low number of different entries,
- cyclicity.

B The AES/Twister S-BOX

The twister S-box is taken from AES [16] which is as follows.

0x63	0x7c	0x77	0x7b	0xf2	0x6b	0x6f	0xc5
0x30	0x01	0x67	0x2b	0xfe	0xd7	0xab	0x76
0xca	0x82	0xc9	0x7d	0xfa	0x59	0x47	0xf0
0xad	0xd4	0xa2	0xaf	0x9c	0xa4	0x72	0 xc 0
0xb7	0xfd	0x93	0x26	0x36	0x3f	0xf7	0xcc
0x34	$0 \times \mathrm{a} 5$	0xe5	0xf1	0x71	0xd8	0x31	15
0x04	0xc7	0x23	0xc3	0x18	0x96	0x05	0x9a
0x07	0x12	0x80	0xe2	0x	0x27	0xb2	75
0x09	0x83	0x2c	0x1a	0x1b	0x6e	0x5a	$0 \mathrm{xa0}$
0x52	0x3b	0xd	0xb3	0x2	0xe3	0x2f	4
0x53	0xd1	0x00	0xed	0x20	0xfc	0xb1	0x5b
0x6a	0xcb	0xbe	0x39	0x4a	0x4c	0x58	xcf
0xd0	$0 x e f$	$0 x a a$	0xfb	0x4	0x4	0x33	0x85
0x45	0xf9	0x02	0x7f	0x50	0x3c	0x9f	$0 \mathrm{xa8}$
0×5	0xa3	0x40	0x8f	0x9	0x9	0x38	0xf5
0xbc	0xb6	0xda	0x21	0x10	0xff	0xf3	0 xd 2
0xc	0x0c	0x13	0xe	0x	0x97	0x44	0×17
0xc4	0xa7	0x7e	0x3d	0x64	0x5d	0x19	x73
0x60	0x81	0x	0xd	0x2	0x2a	0x90	0x88
0x46	0xee	0xb8	0x14	0xde	0x5e	0x0b	db
0xe0	0x32	0x3a	0x0a	0x49	0x06	0x24	0x
0xc2	0xd3	0 xac	0x62	0x91	0x95	0xe4	x79
0xe7	0xc8	0x37	0x6d	0x8d	0xd5	0x4e	0xa9
0x6c	0x56	0xf4	0xea	0x6	0x7a	$0 x a e$	x08
0xba	0x78	0x25	0x2e	0x1c	0xa6	0xb4	0xc6
0xe8	0xdd	0x74	0x1f	0x4b	0xbd	0x8b	x8a
0x70	0x3e	0xb5	0x66	0x48	0x03	0xf6	0x0e
0x61	0x35	0x57	0xb9	0x86	0xc1	0x1d	x9e
0xe1	0xf8	0x98	0x11	0x69	0xd9	0x8e	0x94
0x9b	0x1e	0x87	0xe9	0xce	0x55	0x28	0 xdf
0x8c	0xa1	0x89	0x0d	0xbf	0xe6	0x42	0x68
0x41	0x99	0x2d	0x0f	0xb0	0x54	0xbb	0x16

Table B.1: The AES/Twister S-box

C Examples

This appendix is for informational purposes only.

C. 1 Twister-224 Examples

In the following we show the result of an extremely long messages which is hash using Twister-224: The message
abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno
is repeated 16777216 times which give the hash value
$7 D 4235 B D 495 A 99 F 75302 C B 6547966 B 0 B A C 9206 C 174 E 954 A D 83 D C F 080$
The following table shows some test vectors for short message inputs.

length	message	hash value
0	00	93CFDE255C161D1D06644413C6D7D7C1442E4654671AFAFC09D4A40E
1	00	0BD9F4888660AEDB72B943FEF54F69293691E991316C2F5F0CB87FE2
2	C0	33B9EE086BA1E051AB91281AA06846ACC891DCA5624B5A4F4A99A1D8
3	C0	8042AE83808FA215822A46B8409260B420FC09636D46C8B1C9EB231B
4	80	4F530B4AD1EA61B04FFD42C83C836307B3D7AC30A9E60C9710BD1242
5	48	4C0A0B005677E59427D43EE38A66946476A399E0B956D1633781F679
6	50	FCEB85A9CE861A8BA136A23833F9605A9D0626E541E960A4E937CE65

Table C.1: Short messages for /Twister-224

C. 2 Twister-256 Examples

In the following we show the result of an extremely long messages which is hash using Twister-256: The message
abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno is repeated 16777216 times which give the hash value
$C 2 E F 0 A 386154 A B 0 A 34137799053 C 37 D 9 A 66 C A 4919 F B C$
$6 D E C A 873 A E 7580 C A F 132$

The following table shows some test vectors for short message inputs.

length	message	hash value
0	00	CC043565D3016A5F4F0635FF0DE23
		EEF069CE518266A488748DB9D69F0664484
1	00	97BAF8F9060BFAB752CDE28F5ACCC
		780B1858D0A024A283926FAB696D5AF546B
2	C0	EEEAF40C2712BCEF07E746220B7D23
		C6BA2DD9F5C3ECF590D1E0C17C3482077F
3	C0	72CCCBC49B05C7F7F5E9C383616594
		7B36C14F334053E2C7B6C8DC906C55066A
4	80	31AF0D16733F327824F542427B1CB7F
		6320D85750B33057F97C87043BE1E4C9A
5	48	B291BB6E8F1200D3EEB3BB07E359EA
		AE8F65199FD2599883EEE3E99BDDCAF7A9
6	50	D6E468BEBBCA6D1BC4F34CFF0B4409
		97C61B9F01F3E6C0E23BD81ECCA6780A31

Table C.2: Short messages for /Twister-256

C. 3 Twister-384 Examples

In the following we show the result of an extremely long messages which is hash using Twister-384: The message
abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno is repeated 16777216 times which give the hash value
$70 C 2 D 4390429 D B 964 F 939 B 92 A 3 C 74 F 8 A 8 D 851 A 4 D A A 6 F 82481 B 2471 A$
$A D 5 F A 6768 D 64254 B 433 D 509 A 4 D B C 64718 F 9 E 8026 F$

The following table shows some test vectors for short message inputs.

length	message	hash value
0	00	C19F4457E1B269F4C4502A54F5C1946544A0F1B6D1C99
		85B5C94137806C4F8D7
		F188374A2D7E01685B97E40F18DD6808
1	00	F154FE7598363EE2763930F5F399F0AD7830852641703A6
		C4B752897EDA9AC64F08A91AECE9E50DCDCB80FFA33E338BD
2	C0	722BF0C945E15863C80588F47533BC4E7FE3207B11407F6
		D525E365CE43F2F60BF3FBC0B1F32969192086D5D005AA9C2
3	C0	6748A9704C2452B5C6CF5262C5BE9F0ED29C0FACD821B
		658CA93857513C40C616B346F6B1794E1E74964DF7564977909
4	80	F8FF0FA880919F7D302B66EA95C796DF97CE0CB204E91C
		40626776E0E7A64E55491406FA8164196B33039538A2563DF3
5	48	BBBD380230A91CB05AD43ACE01B024585528D971FFC87
		A194CE0BF4564EC1656AA7DC4E6F4E8264F0816905C8EF5606B
6	50	53024F774BDFF0AC54A4F42D7EDE8490BCEC2F955F60B
		B9837EBB13F084AAD55B01C007CAF7C7DDDB4A436ADEB59F69B

Table C.3: Short messages for /Twister-384

C. 4 Twister-512 Examples

In the following we show the result of an extremely long messages which is hash using Twister-512: The message
abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno is repeated 16777216 times which give the hash value

$$
\begin{aligned}
& 371 C 7 D 667057 E 67177901164 A 3 C C 627 A 55 E A A 2 E 5 \\
& B B B 63 D 141 F 3344538 A 26 F 0277 F F C 3 B A 1 B 184 E 091871 \\
& 6 E A 1 C 9 D D 2 C C A E 8 C 7 A C B 15 F A 9946583 E D A 5 B 9805 F E 9 F 9 A
\end{aligned}
$$

The following table shows some test vectors for short message inputs.

length	message	hash value
0	00	8F5A88005B2833AFCAA6EC3762F8135C00DCE5A5
		0B74E4C340AFF10165745EC88B0B542D49345E863AFAA2
		1A3F2D735191612DC214A8E4A8CA54147BDA477AD2
1	00	DB69DD03E42C4D256CFE87FD67E56039E172A985AC3F2
		6C1BEE30563C262BD15EF06D9F1296BD92524874BA7A2
		9E4B4C6AAB1267919061C77CD2E27AF69DF4D6
2	C0	E799E0EE71DBEC91B34B4E2E91481498E01A6FCE4A12F5BA
		AE085ED8D31047F0E64E80857CCC224EA057F492F
		A8DFBC98155D67197CB9DBEAC252673A423724C
3	C0	50DD967493AA124B145DF4753807B23C7165E4B85AC
		51EEA2B0F1BE2BB541B17C20F27D1B1D923093E62DDACE
		EEE41A8196839CFCD354F28D5F2A61F94E8E01F
4	80	DCC95B18A2F2E0D6FFA5A007EBA8DD2B1B0B97F96
		BD04423B9BA3FFF2E2C2E723820451D04F7F83BB122
		D9F8E27FE34346EDFDC8E9F9FB4D732C0CE937709AF7
5	48	BDF4009E3C01E4BB96DA092C406C8F87200
		D415D00252D204B0774F49CA66AFAB1A6B375680CDFB9646587
		FD35B71C67BD788BA7CFEEA13639EABCCB01FD2259
6	50	903470C64B53DFBBCE29CE003F7C98F25DDBE7AF81
		C888778985C7D962F1979C97E657E2925EE8E3F85D
		E96B245DA11BCC66C015ED107D79E85FE071BE58A5B5

Table C.4: Short messages for /Twister-512

[^0]: *Bauhaus-University Weimar, ewan.fleischmann@uni-weimar.de
 \dagger Sirrix AG security technologies, c.forler@sirrix.com
 ${ }^{\ddagger}$ Bauhaus-University Weimar, michael.gorski@uni-weimar.de

