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1 Introduction

In this document we present a dedicated ARIRANG1 hash algorithm family, which includes
224, 256, 384 and 512-bit variants to allow substitution for the SHA-2 family. Throughout
the document, the four members of the ARIRANG family are called ARIRANG-224, ARIRANG-
256, ARIRANG-384 and ARIRANG-512 by their hashed bit sizes. The ARIRANG family process
messages in the usual left-to-right order like Merkle-Damg̊ard strengthening [16, 27, 25] and
are suitable for any cryptographic applications such as digital signatures, HMAC [5], pair-wise
key establishment schemes, deterministic random bit generators, randomized hashing [18], etc.

This document is organized as follows. In Sect. 2, we present definitions, notations, and
the mathematical basis necessary for understanding the specification of ARIRANG, followed by
its design rationale in Sect. 3 and the algorithm specifications in Sect. 4. This is followed by
the motivations for all design choices in Sect. 5, and the treatment of the resistance against
known types of attacks and the formal security proofs of the structure of ARIRANG in Sect. 6.
In Sect. 7, we provide the security requirements of some cryptographic applications based on
hash functions and give the security of them based on ARIRANG. Subsequently, constructions
of ARIRANG based HMAC, Pseudo Random Functions (PRFs), and Randomized Hashing are
treated in Sect. 8. Lastly, we deal with implementations and efficiencies of ARIRANG in Sect. 9.

2 Preliminaries

2.1 Definitions

The following terms are used in the ARIRANG family.

Bit A binary digit having a value of 0 or 1.

Byte An ordered collection of eight bits.

Word An ordered collection of either 32 bits (4 bytes) or 64 bits (8 bytes),
which depends on the variants of the ARIRANG family.

2.2 Algorithm Parameters and Symbols

2.2.1 Parameters

The following parameters are used in the specification of the ARIRANG family.

a, b, c, . . . , h Working variables that are the w-bit words used in the computation
of the intermediate hash values H i, where w is either 32 or 64.

1“ARIRANG” is arguably the most popular and best-known Korean folk song, both inside and outside
Korea. ARIRANG is an ancient native Korean word with no direct modern meaning. ‘Ari’ means “beautiful”,
“lovely” and “charming”. ‘Rang’ can mean “dear”. Because of those words, arirang could be interpreted to
mean “beautiful dear”; however, this modern interpretation is unlikely to match the original (ancient) meaning.
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Ctri The ith 2w-bit counter value; the left-most w-bit word is denoted
by Ctri

0 and the right-most w-bit word is denoted by Ctri
1, where

w is either 32 or 64.

F (256) The compression function of ARIRANG-256 and ARIRANG-224.

F (512) The compression function of ARIRANG-512 and ARIRANG-384.

G(256) The function used in each step of ARIRANG-256 and ARIRANG-224.

G(512) The function used in each step of ARIRANG-512 and ARIRANG-384.

k Number of zeros appended to a message during the padding step.

l Length of the message, M , in bits.

M Message to be hashed.

m Number of bits in a message block.

M i Message block i, with a size of m bits.

M i
j The jth word of the ith message block M i, where M i

0 is the left-most
word of M i.

N Number of blocks in the padded message.

H i The ith hash value; H0 is the initial value and HN is the final hash
value (HN is used to determine the message digest).

H i
j The jth word of the ith intermediate hash value H i, where H i

0 is the
left-most word of H i.

K
(256)
0 , · · · , K(256)

15 Sixteen 32-bit constant values to be used in the message schedule
of ARIRANG-256 and ARIRANG-224.

K
(512)
0 , · · · , K(512)

15 Sixteen 64-bit constant values to be used in the message schedule
of ARIRANG-512 and ARIRANG-384.

S LFSR to be used for generating constants.

s State of LFSR.

T1, T2 Temporary w-bit words used in the hash computation, where w is
either 32 or 64.
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Wσ(2t), Wσ(2t+1) Two w-bit message words into the t-th step function, where w is
either 32 or 64.

σ(·) Permutation for the message ordering in the message schedule.

2.2.2 Symbols

The following symbols are used in the specification of the ARIRANG family, and each operates
on w-bit words.

⊕ Bitwise eXclusive-OR (XOR) operation.

• Multiplication in GF (28).

⊗ Multiplication in GF (28)[x].

≪ n Left rotation of n-bit position.

≫ n Right rotation of n-bit position.

∥ Concatenation.

2.3 Notation and Conventions

2.3.1 Bit String and Integers

The following terminologies related to bit strings and integers are used.

1. A hexadecimal digit is an element of the set {0,1,. . .,9,A,. . .,F}.

2. A word may be represented as a sequence of hexadecimal digits.

Throughout this specification, each of 32-bit and 64-bit words is stored into a string in
the ‘big-endian’ convention.

3. In the ARIRANG family, a word representation of an integer is required for counters and
the message length l in the padding technique of Sect. 4.1.1.

(a) In ARIRANG-224 and ARIRANG-256, integers between 0 and 264 − 1 both inclusive
are used. If Z is such an integer, then Z = 232 · X + Y , where 0 ≤ X < 232 and
0 ≤ Y < 232. So, Z can be represented as X ′∥Y ′, where X ′ and Y ′ are 32-bit
word representations of X and Y by representing the least significant four bits of
the integer as the right-most hexadecimal digit of the word representation.

(b) In ARIRANG-384 and ARIRANG-512, integers between 0 and 2128 − 1 both inclusive
are used. If Z is such an integer, then Z = 264 · X + Y , where 0 ≤ X < 264 and
0 ≤ Y < 264. So, Z can be represented as X ′∥Y ′, where X ′ and Y ′ are 64-bit word
representations of X and Y .
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4. For the ARIRANG family, the size of the message block depends on the algorithm.

(a) For ARIRANG-224 and ARIRANG-256, each message block has 512 bits, which are
represented as a sequence of sixteen 32-bit words.

(b) For ARIRANG-384 and ARIRANG-512, each message block has 1024 bits, which are
represented as a sequence of sixteen 64-bit words.

2.4 Mathematical Preliminaries

In this section, we introduce basic mathematical concepts needed in the following document.

2.4.1 The Field GF (28)

A finite field is an algebraic object with two operations: addition and multiplication, but these
operations are different from the standard integer operations. All byte values in ARIRANG
correspond to elements of a finite field GF (28). A byte b = b7b6 · · · b0 is interpreted as a finite
field element using the following polynomial representation:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0.

Addition and multiplication in GF (28) are exactly the same as in AES, i.e., ARIRANG adopts
the irreducible reducing polynomial of degree 8, denoted by m(x), used in AES to define the
base finite field GF (28):

m(x) = x8 + x4 + x3 + x + 1,

or {01}{1B} in hexadecimal notation.

Addition in GF (28). To add two elements in GF (28), we apply the corresponding polynomial
coefficients to the addition in GF (2); the addition in GF (28) is performed with the XOR
operation ⊕.

Multiplication in GF (28). In the polynomial representation, the multiplication in GF (28),
denoted by •, is on the modular operation of the irreducible polynomial m(x). The multiplica-
tion of the binary polynomial b(x) =

∑7
i=0 bix

i and the polynomial x is computed as

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x.

In order to reduce the above result down to degree i (0 ≤ i ≤ 7), a modular operation is
performed by the irreducible polynomial m(x). If b7 = 0, a reduction is not needed. Otherwise,
a reduction is achieved by XORing the polynomial m(x), resulting in a polynomial of degree
less than 8. In hexadecimal notation, a multiplication by x is accomplished at the byte level
by a left shift and a subsequent conditional bitwise XOR with {1B}.

By repeated application of the above computation, a multiplication by higher powers of
x can be implemented, and furthermore by adding intermediate results obtained from such
multiplication, the multiplication by any polynomial can be calculated. For example, {6F}•{13}
is calculated as follows:
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{6F} • {02} = {DE}
{6F} • {04} = {A7}
{6F} • {08} = {55}
{6F} • {10} = {AA}

thus,

{6F} • {13} = {6F} • ({01} ⊕ {02} ⊕ {10})
= {6F} ⊕ {DE} ⊕ {AA}
= {1B}.

2.4.2 Polynomials in GF(28)[x]

A four-term polynomial and an eight-term polynomial in GF (28)[x] represent a 4-byte word
and a 8-byte word, respectively. The addition is performed in GF (2); it corresponds to an XOR
operation between the corresponding bytes in each of the words. The multiplication is achieved
by two steps. In the first step, the polynomial multiplication is algebraically performed, and
then in the second step, the result is reduced by a modular operation with a reducing polynomial
of degree 4 or 8. For ARIRANG-256 and ARIRANG-512, this is accomplished with the reducing
polynomials x4 + 1 and x8 + 1 both in GF (28)[x], respectively. The polynomials x4 + 1 and
x8 + 1 are not irreducible polynomials over GF (28) each, hence the multiplication by a fixed
polynomial is not necessarily invertible. In the ARIRANG family, two fixed polynomials are used
so that the multiplications by them are both invertible; for ARIRANG-256 a fixed polynomial
a(x) = {03}x3 + {01}x2 + {01}x + {02} is used, and for ARIRANG-512 a fixed polynomial
a(x) = {02}x7 + {0A}x6 + {09}x5 + {08}x4 + {01}x3 + {04}x2 + {01}x + {01} is used. Thus,
given an input word corresponding to y(x) ∈ GF (28)[x], the output word corresponding to
z(x) ∈ GF (28)[x] after this word-level multiplication by the fixed polynomial is calculated
by z(x) = a(x) ⊗ y(x) modulo x4 + 1 or x8 + 1 (this transformation is later called the MDS
transformation in Sects. 4.1.6 and 4.3.6). Note that the byte-level multiplication caused by the
word-level multiplication is performed by the operations defined in the previous section.

Multiplication by x in GF (28)[x] If a(x) =
∑3

i=0 aix
i ∈ GF (28)[x] and b(x) =

∑7
i=0 bix

i ∈
GF (28)[x] are multiplied by the polynomial x in GF (28)[x], then the results are respectively

a3x
4 + a2x

3 + a1x
2 + a0x and

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x.

As in the reduction of the multiplication in GF (28), modular operations are performed by the
reducing polynomials x4 + 1 and x8 + 1, respectively. This computation results in

a2x
3 + a1x

2 + a0x + a3 and

b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x + b7.

The resultant values show that the multiplication by x (or even by higher powers of x) represents
a cyclic shift of the bytes inside the vector. The multiplication by x is also interpreted as a
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multiplication by a matrix. If c(x) = x⊗ a(x) and d(x) = x⊗ b(x) in GF (28)[x], then they are
calculated as follows. 

c0

c1

c2

c3

 =


00 00 00 01
01 00 00 00
00 01 00 00
00 00 01 00




a0

a1

a2

a3




d0

d1

d2

d3

d4

d5

d6

d7


=



00 00 00 00 00 00 00 01
01 00 00 00 00 00 00 00
00 01 00 00 00 00 00 00
00 00 01 00 00 00 00 00
00 00 00 01 00 00 00 00
00 00 00 00 01 00 00 00
00 00 00 00 00 01 00 00
00 00 00 00 00 00 01 00





b0

b1

b2

b3

b4

b5

b6

b7


3 Design Rationale

There are six criteria for the design rationale of ARIRANG.

• Resistance against known attacks. In 2004 and 2005, Wang et al.’s attacks on most
well-known cryptographic hash algorithms such as MD5 and SHA-1 had a big impact on
the field of hash functions. When designing the compression functions of the ARIRANG
family, we gave a high priority to the resistance against known attacks including the Wang
et al.’s attacks and other attacks such as local-collision-finding, near-collision-finding,
pseudo-collision-finding, and fixed-point-finding attacks.

• Formal security proofs of the domain extension of the ARIRANG family. Re-
cent researches revealed that the domain extension of almost all dedicated hash functions,
Merkle-Damg̊ard Strengthening, has weaknesses against multicollision, length-extension
and second-preimage-finding attacks, etc. In this document, it will be shown that the do-
main extension of ARIRANG family is PI-preserving, CR-preserving and PRO-preserving
(or indifferentiably secure), where PI denotes Preimage-resistant, CR denotes collision-
Resistant and PRO denotes PseudoRandom Oracle. The domain extension of ARIRANG
will be also shown to be secure against all known second-preimage-finding attacks. Fur-
thermore, the security proofs of cryptographic applications such as HMAC-ARIRANG and
randomized hashing with ARIRANG will be provided in this document.

• Implementation efficiency. Implementation efficiency is one of the most important
factors together with security. A hash algorithm is used for secure communications, but
needs the resources such as time, power, storage and area. If possible, these resources
must be minimized when a hash algorithm is used to construct a secure communication
channel in practical applications. We tried to maximize implementation efficiency of
ARIRANG in various environments.

• Design logics of a block cipher. A block cipher is a mature field of research in
cryptography; many cryptographers have researched and verified the design logics of a
block cipher. The S-box and MDS-code, which are the optimal components implementing
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confusion and diffusion, are widely adopted in many modern block ciphers. In the design
of ARIRANG, we adopted S-box and MDS-code as its basic components.

• Compatibility with applications of the original SHA-2 family: The SHA-2 family
has been widely used for many “auxiliary” applications, including hash-based message
authentication codes, pseudo random number generators, and key derivation functions
(FIPS 186-2, FIPS 198, SP 800-56A, and SP 800-90). If a hash algorithm proposed as a
SHA-3 candidate is remarkably different from the structure of the original SHA-2 family,
it cannot flexibly be used in existing applications of the original SHA-2 family. Our design
goal is to make ARIRANG compatible with applications of the original SHA-2 family.

• Design simplicity: The simple design of ARIRANG enables readers to understand it
easily; we expect that it will take much less time and effort to implement ARIRANG and
verify its security, and it will be easy to adapt for new environments.

4 Specification

In this section, we describe the specification of the ARIRANG family. The ARIRANG family
includes four hash algorithms ARIRANG-224, ARIRANG-256, ARIRANG-384, and ARIRANG-512.
Each algorithm has a message digest bit-size corresponding to its number. The four algorithms
differ in terms of the size of the blocks and words of data that are used during hashing. Table 1
presents the basic properties of the ARIRANG family.

Table 1: Properties of the ARIRANG family.

Algorithm Message Size Block Size Word Size Message Digest Size
(bits) (bits) (bits) (bits)

ARIRANG-224 < 264 512 32 224
ARIRANG-256 < 264 512 32 256
ARIRANG-384 < 2128 1024 64 384
ARIRANG-512 < 2128 1024 64 512

4.1 ARIRANG-256

The structure of ARIRANG-256 can be described in two phases: 1) preprocessing phase 2)
message digest phase. In the preprocessing phase, it prepares the message blocks M1, M2,· · · ,
MN , the counter values Ctri, and the initial value H0, which are loaded to the message digest
phase. In the message digest phase, a compression function iteratively processes each message
block to compute the hash value HN .
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ARIRANG256(M)
{

ARIRANG256 Preprocessing();

For i = 1 to N
ARIRANG256 CounterAddition(H i−1, Ctri);
ARIRANG256 CompressionFunction(H i−1, M i, H i);

}

0
H

1
M

2
M

3
M

1N
M

− N
M

N
H

1
Ctr

2
Ctr

3
Ctr

1N
Ctr

− N
Ctr

(256)
F

(256)
F

(256)
F

(256)
F

(256)
F

Figure 1: The domain extension of ARIRANG-256.

4.1.1 ARIRANG256 Preprocessing

The preprocessing phase consists of four steps: padding the message M , parsing the padded
message into message blocks, setting the counter values Ctri, and setting the initial value H0.

Padding the message. The l-bit message is padded by the following padding rule so that
the length of the padded message is ensured to be a multiple of 512 bits.

1. The bit “1” is appended to the end of the message, followed by k zero bits, where k is
the smallest non-negative integer such that l + 1 + k ≡ 448 mod 512.

2. The 64-bit binary representation of the integer l is again appended.

Parsing the padded message. After a message has been padded, it is parsed into N 512-
bit blocks M1, M2,· · · , MN . Recall that message block i is denoted by the concatenation of
sixteen words, that is, M i

0|| · · · ||M i
15.

Setting the counter values (Ctri). The purpose of setting the counter value Ctri is to
ensure that each compression function of ARIRANG used to produce a message digest is mutually
different.

For ARIRANG-256, Ctri are represented as the concatenation of two 32-bit words: Ctri
0 is

the left-most 32-bit word of Ctri, and Ctri
1 is the right-most 32-bit word of Ctri. Suppose that

the number of blocks in the padded message is N . Then
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Ctr1 = 0,

Ctr2 = 1,

Ctr3 = 2,

· · ·
CtrN−2 = N − 3,

CtrN−1 = N − 2,

CtrN = P,

where P=0xB7E151628AED2A6A obtained by taking the first 64 bits of the fractional parts of a
normal number e. Since possible message sizes are less than 264, N is less than 255(= 264/512).
We choose P which is not equal to any counter number since P is greater than 255.

Setting the initial value (H0). The initial value H0 consists of the following eight 32-bit
words in hexadecimal:

H0
0 = 0x6A09E667,

H0
1 = 0xBB67AE85,

H0
2 = 0x3C6EF372,

H0
3 = 0xA54FF53A,

H0
4 = 0x510E527F,

H0
5 = 0x9B05688C,

H0
6 = 0x1F83D9AB,

H0
7 = 0x5BE0CD19.

These words are obtained by taking the first 32 bits of the fractional parts of the square
roots for the first eight prime numbers each.

4.1.2 ARIRANG-256 Constants

The ARIRANG-256 constants K
(256)
0 , · · · , K(256)

15 come from the following sequence of 32-bit

words in hexadecimal: K
(256)
0 is set to be 0x517CC1B7 which is the first 32 bits of the fractional

parts of π−1. It is also used for the initial state (s3, s2, s1, s0) of 4-byte LFSR S to generate the
next 15 32-bit constants. The connection polynomial of LFSR S is X4 + X + 1 ∈ GF (28)[X],
and LFSR S is performed in the algorithm ConstantGeneration as follows:

ConstantGeneration
{

s0 = 0xB7; s1 = 0xC1; s2 = 0x7C; s3 = 0x51;

K
(256)
0 = s3∥s2∥s1∥s0;

for t=1 to 15 {
st+3 = st ⊕ st−1;

K
(256)
t = st+3∥st+2∥st+1∥st;

}
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Since X4 +X +1 is a primitive polynomial in GF (28)[X], the period of S is 24−1 = 15 and

thus K
(256)
0 = K

(256)
15 . In hexadecimal, the sequence of the constant words K

(256)
0 , · · · , K(256)

15 is
given by

0x517CC1B7 0x76517CC1 0xBD76517C 0x2DBD7651

0x272DBD76 0xCB272DBD 0x90CB272D 0x0A90CB27

0xEC0A90CB 0x5BEC0A90 0x9A5BEC0A 0xE69A5BEC

0xB7E69A5B 0xC1B7E69A 0x7CC1B7E6 0x517CC1B7

4.1.3 ARIRANG256 CounterAddition

ARIRANG256 CounterAddition updates the (i − 1)th intermediate hash value H i−1, with the
counter value Ctri.

ARIRANG256 CounterAddition(H i−1, Ctri)
{

H i−1
0 = H i−1

0 ⊕ Ctri
0;

H i−1
4 = H i−1

4 ⊕ Ctri
1;

}

4.1.4 ARIRANG256 CompressionFunction

After the preprocessing phase is completed, message blocks M1, M2,. . ., MN are processed in
order by the steps described algorithmically in Figure 2. ARIRANG256 CompressionFunction
runs 4 rounds which contain 10 steps each, and thus 40 steps in total. It is made up of four proce-
dures: ARIRANG256 RegisterInitialize, ARIRANG256 StepFunction, ARIRANG256 Feedforward,
and ARIRANG256 MessageSchedule.

ARIRANG256 CompressionFunction(H i−1, M i, H i)
{

ARIRANG256 MessageSchedule(M i, Wt);
ARIRANG256 RegisterInitialize(H i−1, a, b, c, d, e, f , g, h);

for t = 0 to 19
ARIRANG256 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h);

ARIRANG256 Feedforward1(H
i−1, a, b, c, d, e, f , g, h);

for t = 20 to 39
ARIRANG256 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h);

ARIRANG256 Feedforward2(H
i, H i−1, a, b, c, d, e, f , g, h);

}
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Figure 2: ARIRANG256 CompressionFunction.
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ARIRANG256 RegisterInitialize. ARIRANG256 RegisterInitialize initializes the eight work-
ing variables a, b, c, d, e, f , g, and h with the (i− 1)th intermediate hash value H i−1.

ARIRANG256 RegisterInitialize(H i−1, a, b, c, d, e, f , g, h)
{

a = H i−1
0 ; b = H i−1

1 ; c = H i−1
2 ; d = H i−1

3 ;
e = H i−1

4 ; f = H i−1
5 ; g = H i−1

6 ; h = H i−1
7 ;

}

ARIRANG256 StepFunction. ARIRANG256 StepFunction updates the eight working vari-
ables a, b, c, d, e, f , g, and h with the function G(256) and the two input message words Wσ(2t),
Wσ(2t+1). It is schematically depicted in Fig. 3; the function G(256) will be explained later in
detail.

ARIRANG256 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h)
{

T1 = G(256)(a⊕Wσ(2t));
b = a⊕Wσ(2t);
c = b⊕ T1;
d = c⊕ (T1 ≪ 13);
e = d⊕ (T1 ≪ 23);
T2 = G(256)(e⊕Wσ(2t+1));
f = e⊕Wσ(2t+1);
g = f ⊕ T2;
h = g ⊕ (T2 ≪ 29);
a = h⊕ (T2 ≪ 7);

}

ARIRANG256 Feedforward. ARIRANG256 Feedforward1 updates the eight working vari-
ables a, b, c, d, e, f , g, and h with H i−1 after the first 20 steps are completed.

ARIRANG256 Feedforward1(H
i−1, a, b, c, d, e, f , g, h)

{
a = a⊕H i−1

0 ; b = b⊕H i−1
1 ; c = c⊕H i−1

2 ; d = d⊕H i−1
3 ;

e = e⊕H i−1
4 ; f = f ⊕H i−1

5 ; g = g ⊕H i−1
6 ; h = h⊕H i−1

7 ;
}

ARIRANG256 Feedforward2 computes the ith intermediate hash value H i.
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Figure 3: ARIRANG256 StepFunction.

ARIRANG256 Feedforward2(H
i, H i−1, a, b, c, d, e, f , g, h)

{
H i

0 = a⊕H i−1
0 ; H i

1 = b⊕H i−1
1 ; H i

2 = c⊕H i−1
2 ; H i

3 = d⊕H i−1
3 ;

H i
4 = e⊕H i−1

4 ; H i
5 = f ⊕H i−1

5 ; H i
6 = g ⊕H i−1

6 ; H i
7 = h⊕H i−1

7 ;
}

ARIRANG256 MessageSchedule. ARIRANG256 MessageSchedule consists of a message word
expansion and a message word ordering.

ARIRANG256 MessageSchedule only generates additional 16 extra words W16, W17, · · · , W31

from the 16 input message words M i
0, M i

1, · · · , M i
15, and 16 constant values K

(256)
0 , K

(256)
1 , · · · ,

K
(256)
15 as follows.
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ARIRANG256 MessageSchedule(M i, Wt)
{

For t = 0 to 15
Wt = M i

t ;

W16 = (W9 ⊕W11 ⊕W13 ⊕W15 ⊕K
(256)
0 ) ≪ 5;

W17 = (W8 ⊕W10 ⊕W12 ⊕W14 ⊕K
(256)
1 ) ≪ 11;

W18 = (W1 ⊕W3 ⊕W5 ⊕W7 ⊕K
(256)
2 ) ≪ 19;

W19 = (W0 ⊕W2 ⊕W4 ⊕W6 ⊕K
(256)
3 ) ≪ 31;

W20 = (W14 ⊕W4 ⊕W10 ⊕W0 ⊕K
(256)
4 ) ≪ 5;

W21 = (W11 ⊕W1 ⊕W7 ⊕W13 ⊕K
(256)
5 ) ≪ 11;

W22 = (W6 ⊕W12 ⊕W2 ⊕W8 ⊕K
(256)
6 ) ≪ 19;

W23 = (W3 ⊕W9 ⊕W15 ⊕W5 ⊕K
(256)
7 ) ≪ 31;

W24 = (W13 ⊕W15 ⊕W1 ⊕W3 ⊕K
(256)
8 ) ≪ 5;

W25 = (W4 ⊕W6 ⊕W8 ⊕W10 ⊕K
(256)
9 ) ≪ 11;

W26 = (W5 ⊕W7 ⊕W9 ⊕W11 ⊕K
(256)
10 ) ≪ 19;

W27 = (W12 ⊕W14 ⊕W0 ⊕W2 ⊕K
(256)
11 ) ≪ 31;

W28 = (W10 ⊕W0 ⊕W6 ⊕W12 ⊕K
(256)
12 ) ≪ 5;

W29 = (W15 ⊕W5 ⊕W11 ⊕W1 ⊕K
(256)
13 ) ≪ 11;

W30 = (W2 ⊕W8 ⊕W14 ⊕W4 ⊕K
(256)
14 ) ≪ 19;

W31 = (W7 ⊕W13 ⊕W3 ⊕W9 ⊕K
(256)
15 ) ≪ 31;

}

For the ordering of the expanded message words Wt, the permutation σ of Table 2 is used.

4.1.5 Hash Value HN of ARIRANG-256

The resulting 256-bit message digest of the message M = (M1,M2, · · · ,MN) is

HN = HN
0 ∥HN

1 ∥HN
2 ∥HN

3 ∥HN
4 ∥HN

5 ∥HN
6 ∥HN

7 .

4.1.6 The Function G(256)

The function G(256) is composed of two different transformations: the SubBytes transformations
and the MDS4×4 transformations.
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Table 2: Message order.

1round 2round 3round 4round
s σ(s) σ(s + 20) σ(s + 40) σ(s + 60)

0 1 16 17 20 21 24 25 28 29
2 3 0 1 3 6 12 5 7 2
4 5 2 3 9 12 14 7 13 8
6 7 4 5 15 2 0 9 3 14
8 9 6 7 5 8 2 11 9 4

10 11 18 19 22 23 26 27 30 31
12 13 8 9 11 14 4 13 15 10
14 15 10 11 1 4 6 15 5 0
16 17 12 13 7 10 8 1 11 6
18 19 14 15 13 0 10 3 1 12

G(256)(X)
{

SubBytes(X, Y );
MDS4×4(Y , Z);
Return Z;

}

SubBytes transformation. The SubBytes transformation is a substitution function which
satisfies a confusion property on each byte. It is defined as the SubBytes transformation of
AES. The input word X is split into four bytes; each byte is run through a bijective S-box.

MDS4×4 transformation. The MDS4×4 transformation is a permutation function which
mixes all bytes of the input word. It is defined as the MDS4×4 transformation of AES. Each
byte of the input word is considered a polynomial over GF(28) and multiplied modulo x4 + 1
with a fixed polynomial a(x), given by

a(x) = {03}x3 + {01}x2 + {01}x + {02}.

This can be written as a matrix multiplication. Let z(x) = a(x)⊗ y(x):
z0

z1

z2

z3

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




y0

y1

y2

y3


As a result of this multiplication, the four bytes are replaced by the following:

z0 = ({02} • y0)⊕ ({03} • y1)⊕ y2 ⊕ y3
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Figure 4: The function G(256) of ARIRANG-256.

Table 3: S-box of ARIRANG : For example, S-box(31)=C7.

S(x||y) y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
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z1 = y0 ⊕ ({02} • y1)⊕ ({03} • y2)⊕ y3

z2 = y0 ⊕ y1 ⊕ ({02} • y2)⊕ ({03} • y3)

z3 = ({03} • y0)⊕ y1 ⊕ y2 ⊕ ({02} • y3)

4.2 ARIRANG-224

ARIRANG-224 is used to hash a message M with a length of l bits, where 0 ≤ l < 264. ARIRANG-
224 is defined in the same manner as ARIRANG-256, with the following two exceptions:

4.2.1 Setting the Initial Value (H0)

For ARIRANG-224, the initial value H0 shall consist of the following eight 32-bit words, in
hexadecimal:

H0
0 = 0xCBBB9D5D,

H0
1 = 0x629A292A,

H0
2 = 0x9159015A,

H0
3 = 0x152FECD8,

H0
4 = 0x67332667,

H0
5 = 0x8EB44A87,

H0
6 = 0xDB0C2E0D,

H0
7 = 0x47B5481D.

These words are obtained by taking the first 32 bits of the fractional parts of the square
roots for the ninth to the sixteenth prime numbers each.

4.2.2 Hash Value HN of ARIRANG-224

The 224-bit message digest is obtained by truncating the final hash value HN to its leftmost
224 bits:

HN
0 ∥HN

1 ∥HN
2 ∥HN

3 ∥HN
4 ∥HN

5 ∥HN
6 .

4.3 ARIRANG-512

The structure of ARIRANG-512 is similar to that of ARIRANG-256. ARIRANG-512 doubles the
word size of ARIRANG-256, and thus the initial value and the constant values are changed. The
structure of ARIRANG-512 is described as follows.

ARIRANG512(M, H0)
{

ARIRANG512 Preprocessing()

for i = 1 to N
ARIRANG512 CounterAddition(H i−1, Ctri);
ARIRANG512 CompressionFunction(H i−1,M i, H i);

}
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Figure 5: The domain extension of ARIRANG-512.

4.3.1 ARIRANG512 Preprocessing

The preprocessing consists of four steps: padding the message M , parsing the padded message
into message blocks, setting the counter values Ctri, and setting the initial value H0.

Padding the message. The l-bit message is padded by the following padding rule so that
the length of the padded message is ensured to be a multiple of 1024 bits.

1. The bit “1” is appended to the end of the message, followed by k zero bits, where k is
the smallest non-negative integer such that l + 1 + k ≡ 896 mod 1024.

2. The 128-bit binary representation of the integer l is again appended.

Parsing the padded message. After a message has been padded, it is parsed into N 1024-
bit blocks M1, M2,· · · , MN . Recall that message block i is denoted by the concatenation of
sixteen 64-bit words, that is, M i

0|| · · · ||M i
15.

Setting the counter values (Ctri). The purpose of setting the counter value Ctri is to
ensure that each compression function of ARIRANG used to produce a message digest is mutually
different.

For ARIRANG-512, Ctri are the concatenation of two 64-bit words each. Ctri
0 is the left-

most 64-bit word of Ctri, and Ctri
1 is the right-most 64-bit word of Ctri. Suppose that the

number of blocks in the padded message is N . Then

Ctr1 = 0,

Ctr2 = 1,

Ctr3 = 2,

· · ·
CtrN−2 = N − 3,

CtrN−1 = N − 2,

CtrN = P,

P=0xB7E151628AED2A6ABF7158809CF4F3C7 obtained by taking the first 128 bits of the frac-
tional parts of normal number e. Since possible message sizes are less than 2128, N is less than
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2118(= 2128/1024). We choose P which is not equal to any counter number since P is greater
than 2118.

Setting the initial hash value (H0). The initial value H0 consists of the following eight
64-bit words in hexadecimal:

H0
0 = 0x6A09E667F3BCC908,

H0
1 = 0xBB67AE8584CAA73B,

H0
2 = 0x3C6EF372FE94F82B,

H0
3 = 0xA54FF53A5F1D36F1,

H0
4 = 0x510E527FADE682D1,

H0
5 = 0x9B05688C2B3E6C1F,

H0
6 = 0x1F83D9ABFB41BD6B,

H0
7 = 0x5BE0CD19137E2179.

These words are obtained by taking the first 64 bits of the fractional parts of the square
roots for the first eight prime numbers each.

4.3.2 ARIRANG512 Constants

The ARIRANG-512 constants K
(512)
0 , · · · , K(512)

15 come from the following sequence of 64-bit

words in hex: K
(512)
0 is set to be 0x517CC1B727220A94 which is the first 64 bits of the fractional

parts of π−1. It is also used for the initial state (s3, s2, s1, s0) of 4-word LFSR S to generate
the next 15 64-bit constants, where a word is 16 bits. The connection polynomial of LFSR S
is X4 + X + 1 ∈ GF (216)[X], and LFSR S is performed in the algorithm ConstantGeneration
as follows:

ConstantGeneration
{

s0 = 0x0A94; s1 = 0x2722; s2 = 0xC1B7; s3 = 0x517C;

K
(512)
0 = s3∥s2∥s1∥s0;

for t=1 to 15
st+3 = st ⊕ st−1;

K
(512)
t = st+3∥st+2∥st+1∥st;

}

Since X4 + X + 1 is a primitive polynomial in GF (216)[X], the period of S is 24 − 1 = 15

and thus K
(512)
0 = K

(512)
15 . In hex, a sequence of constants words K

(512)
0 , · · · , K(512)

15 is given by

0x517CC1B727220A94 0x2DB6517CC1B72722 0xE6952DB6517CC1B7

0x90CBE6952DB6517C 0x7CCA90CBE6952DB6 0xCB237CCA90CBE695

0x765ECB237CCA90CB 0xEC01765ECB237CCA 0xB7E9EC01765ECB23

0xBD7DB7E9EC01765E 0x9A5FBD7DB7E9EC01 0x5BE89A5FBD7DB7E9

0x0A945BE89A5FBD7D 0x27220A945BE89A5F 0xC1B727220A945BE8

0x517CC1B727220A94
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4.3.3 ARIRANG512 CounterAddition

ARIRANG512 CounterAddition updates the (i − 1)th intermediate hash value H i−1 with the
Counter Value Ctri.

ARIRANG512 CounterAddition(H i−1, Ctri)
{

H i−1
0 = H i−1

0 ⊕ Ctri
0;

H i−1
4 = H i−1

4 ⊕ Ctri
1;

}

4.3.4 ARIRANG512 CompressionFunction

After the preprocessing phase is completed, message blocks M1, M2,. . ., MN are processed in
order by the steps described algorithmically in Figure 6. ARIRANG512 CompressionFunction
runs 4 rounds which contain 10 steps each, and thus 40 steps in total. It is made up of four proce-
dures: ARIRANG512 RegisterInitialize, ARIRANG512 StepFunction, ARIRANG512 Feedforward,
and ARIRANG512 MessageSchedule.

ARIRANG512 CompressionFunction(H i−1, M i, H i)
{

ARIRANG512 MessageSchedule(M i, W );
ARIRANG512 RegisterInitialize(H i−1, a, b, c, d, e, f , g, h);

for t = 0 to 19
ARIRANG512 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h);

ARIRANG512 Feedforward1(H
i−1, a, b, c, d, e, f , g, h);

for t = 20 to 39
ARIRANG512 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h);

ARIRANG512 Feedforward2(H
i, H i−1, a, b, c, d, e, f , g, h);

}

ARIRANG512 RegisterInitialize. ARIRANG512 RegisterInitialize initializes the eight work-
ing variables a, b, c, d, e, f , g, and h with the (i− 1)th intermediate hash value H i−1.

ARIRANG512 RegisterInitialize(H i−1, a, b, c, d, e, f , g, h)
{

a = H i−1
0 ; b = H i−1

1 ; c = H i−1
2 ; d = H i−1

3 ;
e = H i−1

4 ; f = H i−1
5 ; g = H i−1

6 ; h = H i−1
7 ;

}
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Figure 6: ARIRANG512 CompressionFunction.

October 29, 2008 page 24



ARIRANG Designed by CIST

ARIRANG512 StepFunction. ARIRANG512 StepFunction updates the eight working vari-
ables a, b, c, d, e, f , g, and h with the function G(512) and the two input message words Wσ(2t),
Wσ(2t+1). It is schematically depicted in Fig. 7; the function G(512) will be explained later in
detail.

ARIRANG512 StepFunction(Wσ(2t), Wσ(2t+1), a, b, c, d, e, f , g, h)
{

T1 = G(512)(a⊕Wσ(2t));
b = a⊕Wσ(2t);
c = b⊕ T1;
d = c⊕ (T1 ≪ 29);
e = d⊕ (T1 ≪ 41);
T2 = G(512)(e⊕Wσ(2t+1));
f = e⊕Wσ(2t+1);
g = f ⊕ T2;
h = g ⊕ (T2 ≪ 53);
a = h⊕ (T2 ≪ 13);

}

a b c d e f hg

(2 )tW
σ (2 1)tW

σ +

a b c d e f hg

G
(5
12
)

G
(5
1
2)

Figure 7: ARIRANG512 StepFunction.

ARIRANG512 Feedforward. ARIRANG512 Feedforward1 updates the eight working vari-
ables a, b, c, d, e, f , g, and h with H i−1 after the first 20 steps are completed.

ARIRANG512 Feedforward1(H
i−1, a, b, c, d, e, f , g, h)

{
a = a⊕H i−1

0 ; b = b⊕H i−1
1 ; c = c⊕H i−1

2 ; d = d⊕H i−1
3 ;

e = e⊕H i−1
4 ; f = f ⊕H i−1

5 ; g = g ⊕H i−1
6 ; h = h⊕H i−1

7 ;
}
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ARIRANG512 Feedforward2 computes the ith intermediate hash value H i.

ARIRANG512 Feedforward2(H
i, H i−1, a, b, c, d, e, f , g, h)

{
H i

0 = a⊕H i−1
0 ; H i

1 = b⊕H i−1
1 ; H i

2 = c⊕H i−1
2 ; H i

3 = d⊕H i−1
3 ;

H i
4 = e⊕H i−1

4 ; H i
5 = f ⊕H i−1

5 ; H i
6 = g ⊕H i−1

6 ; H i
7 = h⊕H i−1

7 ;
}

ARIRANG512 MessageSchedule. ARIRANG512 MessageSchedule consists of a message word
expansion and a message word ordering.

ARIRANG512 MessageSchedule only generates additional 16 extra words W16, W17, · · · , W31

from the 16 input message words M i
0, M i

1, · · · , M i
15, and 16 constant values K

(512)
0 , K

(512)
1 , · · · ,

K
(512)
15 as follows.

ARIRANG512 MessageSchedule(M i, W )
{

For t = 0 to 15
Wt = M i

t ;

W16 = (W9 ⊕W11 ⊕W13 ⊕W15 ⊕K
(512)
0 ) ≪ 11;

W17 = (W8 ⊕W10 ⊕W12 ⊕W14 ⊕K
(512)
1 ) ≪ 23;

W18 = (W1 ⊕W3 ⊕W5 ⊕W7 ⊕K
(512)
2 ) ≪ 37;

W19 = (W0 ⊕W2 ⊕W4 ⊕W6 ⊕K
(512)
3 ) ≪ 59;

W20 = (W14 ⊕W4 ⊕W10 ⊕W0 ⊕K
(512)
4 ) ≪ 11;

W21 = (W11 ⊕W1 ⊕W7 ⊕W13 ⊕K
(512)
5 ) ≪ 23;

W22 = (W6 ⊕W12 ⊕W2 ⊕W8 ⊕K
(512)
6 ) ≪ 37;

W23 = (W3 ⊕W9 ⊕W15 ⊕W5 ⊕K
(512)
7 ) ≪ 59;

W24 = (W13 ⊕W15 ⊕W1 ⊕W3 ⊕K
(512)
8 ) ≪ 11;

W25 = (W4 ⊕W6 ⊕W8 ⊕W10 ⊕K
(512)
9 ) ≪ 23;

W26 = (W5 ⊕W7 ⊕W9 ⊕W11 ⊕K
(512)
10 ) ≪ 37;

W27 = (W12 ⊕W14 ⊕W0 ⊕W2 ⊕K
(512)
11 ) ≪ 59;

W28 = (W10 ⊕W0 ⊕W6 ⊕W12 ⊕K
(512)
12 ) ≪ 11;

W29 = (W15 ⊕W5 ⊕W11 ⊕W1 ⊕K
(512)
13 ) ≪ 23;

W30 = (W2 ⊕W8 ⊕W14 ⊕W4 ⊕K
(512)
14 ) ≪ 37;

W31 = (W7 ⊕W13 ⊕W3 ⊕W9 ⊕K
(512)
15 ) ≪ 59;

}

For the ordering of the expanded message words Wt, the permutation σ of Table 2 is used,
which is the same as that of ARIRANG-256.

October 29, 2008 page 26



ARIRANG Designed by CIST

4.3.5 Hash Value HN of ARIRANG-512

The resulting 512-bit message digest of the message M = (M1,M2, · · · ,MN) is

HN
0 ∥HN

1 ∥HN
2 ∥HN

3 ∥HN
4 ∥HN

5 ∥HN
6 ∥HN

7 .

4.3.6 The Function G(512)

The function G(512) is composed of two different transformations: the SubBytes transformations
and the MDS8×8 transformations.

G(512)(X)
{

SubBytes(X, Y );
MDS8×8(Y , Z);
Return Z;

}

0
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Figure 8: The function G(512) of ARIRANG-512.

SubBytes transformation. The SubBytes transformation is a substitution function which
satisfies a confusion property on each byte. It is defined as the SubBytes transformation of
AES. The input word X is split into four bytes; each byte is run through a bijective S-box (see
Table 3 in Sect. 4.1.6).
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MDS8×8 transformation. The MDS8×8 transformation is a permutation function which
mixes all bytes of the input word. Each byte of the input word is considered a polynomial over
GF(28) and multiplied modulo x8 + 1 with a fixed polynomial a(x), given by

a(x) = {02}x7 + {0A}x6 + {09}x5 + {08}x4 + {01}x3 + {04}x2 + {01}x + {01}.
Let z(x) = a(x)⊗ y(x). This can be written as a matrix multiplication as follows:

z0

z1

z2

z3

z4

z5

z6

z7


=



01 02 0A 09 08 01 04 01

01 01 02 0A 09 08 01 04

04 01 01 02 0A 09 08 01

01 04 01 01 02 0A 09 08

08 01 04 01 01 02 0A 09

09 08 01 04 01 01 02 0A

0A 09 08 01 04 01 01 02

02 0A 09 08 01 04 01 01





y0

y1

y2

y3

y4

y5

y6

y7


As a result of this multiplication, the eight bytes are replaced by the following:

z0 = y0 ⊕ ({02} • y1)⊕ ({0A} • y2)⊕ ({09} • y3)⊕ ({08} • y4)⊕ y5 ⊕ ({04} • y6)⊕ y7

z1 = y0 ⊕ y1 ⊕ ({02} • y2)⊕ ({0A} • y3)⊕ ({09} • y4)⊕ ({08} • y5)⊕ y6 ⊕ ({04} • y7)

z2 = ({04} • y0)⊕ y1 ⊕ y2 ⊕ ({02} • y3)⊕ ({0A} • y4)⊕ ({09} • y5)⊕ ({08} • y6)⊕ y7

z3 = y0 ⊕ ({04} • y1)⊕ y2 ⊕ y3 ⊕ ({02} • y4)⊕ ({0A} • y5)⊕ ({09} • y6)⊕ ({08} • y7)

z4 = ({08} • y0)⊕ y1 ⊕ ({04} • y2)⊕ y3 ⊕ y4 ⊕ ({02} • y5)⊕ ({0A} • y6)⊕ ({09} • y7)

z5 = ({09} • y0)⊕ ({08} • y1)⊕ y2 ⊕ ({04} • y3)⊕ y4 ⊕ y5 ⊕ ({02} • y6)⊕ ({0A} • y7)

z6 = ({0A} • y0)⊕ ({09} • y1)⊕ ({08} • y2)⊕ y3 ⊕ ({04} • y4)⊕ y5 ⊕ y6 ⊕ ({02} • y7)

z7 = ({02} • y0)⊕ ({0A} • y1)⊕ ({09} • y2)⊕ ({08} • y3)⊕ y4 ⊕ ({04} • y5)⊕ y6 ⊕ y7

4.4 ARIRANG-384

ARIRANG-384 is used to hash a message M with a length of l bits, where 0 ≤ l < 2128. ARI-
RANG-384 is defined in the same manner as ARIRANG-512, with the following two exceptions:

4.4.1 Setting the Initial Value (H0)

For ARIRANG-384, the initial value H0 shall consist of the following eight 64-bit words, in
hexadecimal:

H0
0 = 0xCBBB9D5DC1059ED8,

H0
1 = 0x629A292A367CD507,

H0
2 = 0x9159015A3070DD17,

H0
3 = 0x152FECD8F70E5939,

H0
4 = 0x67332667FFC00B31,

H0
5 = 0x8EB44A8768581511,

H0
6 = 0xDB0C2E0D64F98FA7,

H0
7 = 0x47B5481DBEFA4FA4.

These words are obtained by taking the first 64 bits of the fractional parts of the square
roots for the ninth to the sixteenth prime numbers each.
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4.4.2 Hash Value HN of ARIRANG-384

The 384-bit message digest is obtained by truncating the final hash value HN to its leftmost
384 bits:

HN
0 ∥HN

1 ∥HN
2 ∥HN

3 ∥HN
4 ∥HN

5 .

5 Motivation for Design Choices

5.1 Structure of ARIRANG

The domain extension of ARIRANG combines the counter-masking and the domain extension
MDP (Merkle-Damg̊ard Strengthening with a Permutation) which was proved to preserve mul-
tiple properties such as collision resistance, MAC, indifferentiability, and pseudorandomness.
The domain extension of ARIRANG is designed by the following criteria:

• Guaranteeing the n-bit security against known second-preimage attacks and
herding attack.

The counter-masking gives ARIRANG the n-bit full security against the Kelsey-Schneier
second-preimage attack [24], the Kelsey-Kohno herding attack [23], and the strengthened
second-preimage attack recently proposed by Elena et al. [1].

• Guaranteeing the n/2-bit security from the perspective of collision resistance,
preimage resistance, indifferentiability, and pseudorandomness.

The domain extension of ARIRANG preserves multiple properties like the MDP domain
extension [19].

• Guaranteeing the security of HMAC-ARIRANG and randomizing hashing based
on ARIRANG.

Security Proofs will be given for HMAC-ARIRANG and a randomized hashing with ARI-
RANG.

5.2 Message Schedule of ARIRANG

We adopt the message schedule which combines a message word expansion and ordering. The
message schedule of ARIRANG follows the design principle of that of HAS-160 which is the
Korean TTA2-standard hash algorithm; so far no attacks on the full-round HAS-160 have been
found. The difference between the message schedule of ARIRANG and that of HAS-160 is that
ARIRANG uses 16 constant words for the message word expansion and to rotate the value
obtained by XORing 4 message words and a constant word.

The message schedule of ARIRANG has been chosen according to the following criteria:

• Minimizing operations for the message schedule.

2TTA : Telecommunications Technology Association
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The step function of ARIRANG is heavier than that of existing hash functions such as the
MD-family, and the SHA-family. As a compensation of a slightly heavy step function,
ARIRANG adopts the simple message schedule to improve efficiency.

• Infeasibility to construct intended differential characteristics.

Four expanded message words in each round make it difficult for an attacker to apply
the technique (which is called the local-collision-pattern-based-attack) used for analyzing
SHA-0 and SHA-1 [33, 32] to ARIRANG, and also to construct any intended local differen-
tial characteristics on each round. Even though some differential characteristics for each
round are found, it is very unlikely to connect one characteristic to another characteristic,
so that the combined differential characteristic appears in more than one round.

5.2.1 Choice of Each Component of the Message Schedule

• The message expansion.

As stated above, the message word expansion of ARIRANG uses constants and a rotation
operation.

– Choice of constants. The message schedule of ARIRANG uses 16 constants K0, K1,
· · · , K15 generated from a LFSR with a maximum period. Each constant is used to
generate one expanded message word. In other words, all expanded message words
are generated by using different constants, except that the constant K0 of the first
expanded message word is the same as the constant K15 of the last expanded message
word. The constants make it difficult to repeatedly use an unintended property of
some successive steps for generalizing it into the full steps of the compression function
of ARIRANG.

– Choice of rotation values. The message schedule of ARIRANG uses several ran-
domly chosen numbers of rotation bits to generate the 16 expanded message words.
Its role is that each bit of the XORed message words affects widely to all bit posi-
tions of expanded message words. Such an effect spreads out in the step functions
of ARIRANG, so that it is difficult for an attacker to find meaningful characteristics.

• Choice of the message ordering.

The most facile strategy of attackers finds some differential patterns and uses them to
construct full round differential characteristics. This is because specific differential pat-
terns used at each round may be applied to other rounds. However, it is not the case
for ARIRANG; even if the order rule permuting from a round to the next round is fixed
in ARIRANG, there are no same differential patterns in all rounds, and thus it would be
difficult for an attacker to use local collision patterns for finding full-round differential
characteristics.

5.3 The Step Function of ARIRANG

The step function of ARIRANG is totally different with those of the MD and SHA-2 families,
which are based on boolean functions and addition operation (�). In order to complete the step
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function ARIRANG employs the AES round components and the structure of the FORK-2563

step function (the FORK-256 hash function was presented at the first NIST hash workshop
and FSE 2006 [21]). Unlike FORK-256, the number of steps of ARIRANG is forty. The step
function of ARIRANG has been chosen with the following motivations:

5.3.1 Choice of Each Component of the Step Function

• Choice of 32-bit and 64-bit oriented operation.

Since most computers today use the word-size of 32 bits, all the operations in ARIRANG-
256 and ARIRANG-224 are suitable for the current environment. Recall that all the
operations of ARIRANG-256 and ARIRANG-224 are 32-bit oriented. At the current state
of the technology, this choice provides a good tradeoff between the ability to run the
algorithm on computers which are available today (as well as on legacy systems and
even 8-bit processors), and the ability to take advantage of larger word-size in future
architectures.

Recently, a next-generation processor supporting 64-bit has been published together with
64-bit operating systems. In the near future, the 64-bit processor will be the general
trend. Since ARIRANG-512 and ARIRANG-384 are designed based on a 64-bit unit, they
are suitable for such 64-bit machines.

• Choice of generalized type-3 Feistel network as the structure of the step func-
tion.

The step function of ARIRANG updates all the working variables with input message
words. The advantage of such structure, which is called generalized type-3 Feistel network,
is that an input message word is used to affect several working variables simultaneously,
so that it is much harder for an attacker to control values of working variables. The reason
is that an attacker must take into account all the possible combinations of values for the
input message words in order to make good cryptanalytic properties, which quickly leads
to an unmanageable complexity.

The working variables of ARIRANG consist of w-bit eight words. The first working variable
a is used to update b, c, and d and the 5-th working variable e is used to update f , g,
and h through each step. This structure is bilaterally symmetric.

Among various network structures which are capable of handling eight working words in
a block, it seems that the generalized type-3 Feistel network provides the best tradeoff
between speed, strength and suitability for analysis. This structure provides much better
diffusion properties with only a slightly added cost; fewer steps can be used to achieve
the desired strength. Moreover, implementations of this structure can be parallelized to
give higher performance efficiency.

• Choice of the G(·) function as the core component of the step function.

ARIRANG uses SubBytes and MDS transformations, which form the G(·) function, as
its core components of the step function with the generalized type-3 Feistel network.
As mentioned before, the SubBytes and MDS transformations are optimal components

3Even if some recent papers show some weaknesses of FORK-256 due to the small number of steps, the
structure of the FORK-256 step function has many merits.
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of symmetric-key algorithms satisfying two properties, confusion and diffusion. The
avalanche effect4 of the step function depends on these SubBytes and MDS transfor-
mations.

• Choice of SubBytes.

In cryptography, a substitution box (or S-box) is a basic component of symmetric-key
algorithms. In block ciphers, it is typically used to obscure the relationship between the
plaintext and the ciphertext: Shannon’s property of confusion. In many cases, the S-box
is carefully chosen to resist against cryptanalysis.

As the SubBytes of ARIRANG, the S-box of AES is adopted; it was specifically designed
to be resistant to linear and differential cryptanalysis. This was done by minimizing the
correlation between linear transformations of input/output bits, and at the same time
minimizing the difference propagation probability. In addition, in order to strengthen
the S-box against algebraic attacks, the affine transformation was added. An ostensible
reason for the choice of the AES S-box is that AES has already been implemented in many
applications. It follows that ARIRANG can share the codes of the implemented AES S-
box; this is a big advantage in cryptographic applications which need a hash algorithm
and a block cipher simultaneously.

• Choice of the MDS transformation.

As the MDS transformation of ARIRANG-256 and ARIRANG-224, the 4x4 MDS matrix of
AES is adopted. The reason of this employment is that 1) it provides the best diffusion
effect,5 and 2) the Hamming weights of the matrix entries ‘01’, ‘02’ and ‘03’ are at most
2 each, which provides advantages when implemented in hardware and in smart cards.
Furthermore, the 4x4 MDS matrix of AES can also be shared where it needs a hash
algorithm and a block cipher simultaneously.

As the MDS transformation of ARIRANG-512 and ARIRANG-384, a newly developed
MDS8×8 matrix, defined over GF (28), is adopted. Similarly, it provides the best dif-
fusion effect; it guarantees that the number of changed input bytes plus the number of
changed output bytes is at least nine. Our design goal for this matrix is to minimize the
Hamming weights of the entries for a better efficiency; the adopted circulant matrix has
3 1-entries per row, and the Hamming weights of the entries are at most 2 each.

5.4 The Feedforward Function

A good hash algorithm should satisfy the preimage-resistant property. The step function of
ARIRANG itself dose not satisfy one-wayness. To provide the one-wayness of the compression
function, an additional component is required, that is, the Feedforward function. By two
Feedforward functions used in the compression function of ARIRANG, it is very unlikely for
an attacker to find a preimage and also to find any fixed point of the compression function of
ARIRANG to be used for the second-preimage attack and the herding attack.

4The avalanche effect is evident if, when an input is changed slightly (e.g., flipping a single bit) the output
changes significantly (e.g., half the output bits flip).

5The MDS4×4 matrix guarantees that the number of changed input bytes plus the number of changed output
bytes is at least five. In other words, any change in a single input byte is guaranteed to change all four output
bytes, any change in any two input bytes is guaranteed to change at least three output bytes, etc.
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Table 4: The 5-step left local collision pattern of ARIRANG, under the assumption that all
message words in the consecutive 5 steps are independent.

Step t ∆W(σ(2t)) ∆a ∆b ∆c ∆d ∆W(σ(2t+1)) ∆e ∆f ∆g ∆h

i α · α β β ≪ 13(29) · β ≪ 23(41) · · ·
i + 1 · · · α β β ≪ 23(41) β ≪ 13(29) · · ·
i + 2 · · · · α β ≪ 13(29) β · · ·
i + 3 · · · · · β α · · ·
i + 4 · · · · · α · · · ·

6 Security Analysis

6.1 Local-Collision-Finding Attack

When an attacker inserts differences to the message words, the event that the difference of the
working variables becomes zero often occurs. It is called a local collision, and a differential
characteristic, which causes a local collision with a certain probability, is called a local collision
pattern. In other words, a local collision is a collision within a few steps of the hash function.
A local collision is not a real collision, but the notion of local collision pattern is important in
cryptanalysis of hash functions because it can be repeatedly used to yield a real collision with
a meaningful probability. For hash functions with a serial structure, their resistances against
collision-finding attack depend mainly on how many times a local collision is repeatedly used
to yield a real collision.

Security of ARIRANG against local collision-finding attack. Firstly, let us focus on one
round of the compression function of ARIRANG. We can easily construct 5-step local collision
pattern, under the assumption that all message words in the consecutive 5 steps are indepen-
dent. Suppose a message difference first occurs in i-th step (perturbation message difference).
It means that the difference of the input messages in i-th step is nonzero (∆Wσ(2i) ̸= 0 or
∆Wσ(2i+1) ̸= 0). The difference will consecutively affect the working variables a, b, c, d, e, f, g, h
in the next four steps. In order to offset these differences and reach a local collision, more
message differences should be introduced in subsequent message words (correction message
difference). Note that two message words are applied to each step. In the case that the left
message word has a perturbation message difference, we call a local collision pattern generated
from the left message word, which has a perturbation message difference, “left local collision
pattern”. In the case that the right message word has a perturbation message difference, we
call a local collision pattern generated from the right message word, which has a perturbation
message difference, “right local collision pattern”. In Table 4 and 5, we illustrate two basic
local collision patterns of such a local collision on ARIRANG, under the assumption that all
message words in the consecutive 5 steps are independent.

However, there is no real 5-step local collision pattern on ARIRANG, because of 4 expanded
message words used in the 1-st step and the 6-th step. More precisely, the following three facts
block an attacker to make 5-step local collision patterns.

• Fact 1 : Since each expanded word is generated from four original message words, if
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Table 5: The 5-step right local collision pattern of ARIRANG, under the assumption that all
message words in the consecutive 5 steps are independent.

Step t ∆W(σ(2t)) ∆a ∆b ∆c ∆d ∆W(σ(2t+1)) ∆e ∆f ∆g ∆h

i · β ≪ 7(13) · · · α · α β β ≪ 29(53)
i + 1 β ≪ 7(13) β ≪ 29(53) · · · · · · α β

i + 2 β ≪ 29(53) β · · · · · · · α

i + 3 β α · · · · · · · ·
i + 4 α · · · · · · · · ·

there is no difference among the four message words, then the expanded message word
has certainly zero difference.

• Fact 2 : Since each expanded word is generated from four original message words, if only
one of the four message words has non-zero difference, then the expanded message word
has certainly non-zero difference.

• Fact 3 : For any nonzero difference α, α⊕ (α ≪ x)⊕ (α ≪ y) is nonzero.

Fact 1 and 2 restricts that there are just four 5-step local collision patterns which the
difference of a message word first occurs at 2-th or 5-th step. For example, if an attacker
attempts to construct 5-step left local collision pattern starting at 1-th step, the additional
message words difference occurs at least one of 4 message words, Wσ(13), Wσ(15), Wσ(17), Wσ(19),
because the message word Wσ(0), which is used in 1-th step, is made from 4 message words,
Wσ(13), Wσ(15), Wσ(17), or Wσ(19). So 5-step local collision patten can be only started at 2-th or
5-th step.

However, four 5-step local collision patterns starting at 2-th or 5-th step are also impossible,
because of Fact 3. For example, 5-step left local collision pattern starting at 2-th step should
satisfy the following condition.

∆Wσ(5) ⊕∆Wσ(7) ⊕∆Wσ(9) = ∆Wσ(10) = 0

Suppose the output difference of left G function in 2-th step be α ̸= 0. In the case of
ARIRANG-256, 5-step left local collision starting at 2-th should satisfy following equation by
above condition.

α⊕ (α ≪ 13)⊕ (α ≪ 23) = 0.

In above equation, for any nonzero difference α, α ⊕ (α ≪ 13) ⊕ (α ≪ 23) can not be
zero because it is a bijective function. The other 5-step local collision patterns have similar
properties. Thus there is no 5-step local collision pattern because of 4 expanded message words
of each round.

To construct local collision pattern, 5-step local collision patterns are combined more than
one pattern and then at least 7 message words must have nonzero difference. The maximum
probability associated with the local collision pattern in one round is 2−224 and the maximum
probability associated with the local collision pattern in full round is at most (2−224)

2
, because

the local collision pattern occur at least one in each round and we assume that an attacker can
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control the collision patterns of the first two rounds. We have described local collision patterns
and each conditions with maximum probability in Appendix B.

Even though a local collision pattern is fortunately found without any assumption, the
local collision pattern can not be applied to other rounds because of the message re-ordering.
In other words, it is difficult to find a collision by using an local collision pattern. Therefore,
we expect that ARIRANG is secure against the local collision-finding attack.

6.2 Collision-Finding Attack

In cryptography, a collision attack on a cryptographic hash function is a technique to find
two different messages with a same output. The “birthday paradox” offers an upper bound
on collision attack: if a hash function produces n bits of hash values, an attacker can find
a collision (on average) by performing only 2n/2 hash operations. Thus, the goal of collision
attack is to find a collision with less than 2n/2 hash operations.

A cryptographic hash algorithm is a function which maps an arbitrary-length input to a
fixed-length output. The most popular method to construct a cryptographic hash function is
the Merkle-Damg̊ard construction by iterating the compression function which maps a fixed-
length input to a fixed-length output. There is a statement regarding the relation between an
iterated hash function H and the underlying compression function F with respect to the prop-
erty of collision-resistance: if the padding procedure is a postfix-free padding such as padding
the length of the input message into the last block of the message, then H is collision resistant
if F is collision-resistance. It is based on the argument that a collision for H would imply a
collision for F .

Security of the compression function of ARIRANG against collision finding attack.
We assume that an attacker can control input message words up to 2 rounds to construct
characteristics with high probabilities. Our assumption is reasonable, because the message
modification normally allows an attacker to control the input message words over at most 2
rounds. Actually, for the ARIRANG family the message modification through 2 rounds is even
more difficult due to the structure of the step function of ARIRANG, which is to update four
working variables with an one working variable.

Now, we analyze the third and fourth rounds of the compression function under the above
assumption. There is no way to modify any message words in the third and fourth rounds,
because by the assumption all message words are fixed during the message modification through
the first 2 rounds. It follows that the message words in the third and fourth rounds are out of
attacker’s control.

Based on this observation, we try to compute an upper bound of the probability of any
collision producing differential characteristic by the following idea. We first set the message
difference vector in which a word of the zero difference is represented by 0 and a word of a
non-zero difference is represented by 1. We focus on the collision event of the last round. In
the last round, there are the 16 original message words and the 4 extended message words, thus
the message difference vector consists of 20 elements in total. For an easy security analysis, we
assume that the original 16 message words and the 4 expanded message words are mutually
independent except for Fact 1 and 2 of section 6.1.

After setting the message difference vector, we want to construct collision characteristics
which can be generated from each message difference vector. The final collision event should
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Table 6: Example. Process table for a collision finding attack on ARIRANG

Step t ∆W(σ(2t)) ∆a ∆b ∆c ∆d ∆W(σ(2t+1)) ∆e ∆f ∆g ∆h Prob.
30 1 · · · · 1 · · · ·
31 0 · · · · 0 · · · ·
32 1 · · · · 0 · · · ·
33 0 1 1 0 or 1 0 or 1 0 1 0 or 1 0 or 1 1 (2−32)2

34 0 0 1 0 1 0 1 1 1 1 (2−32)3

35 0 0 0 1 0 1 1 1 0 0 2−32

36 0 0 0 0 1 0 0 0 1 0
37 0 0 0 0 0 1 1 0 0 1 2−32

38 1 1 0 0 0 0 0 0 0 0 2−32

39 0 0 0 0 0 0 0 0 0 0
40 · 0 0 0 0 · 0 0 0 0

occur in the step where the last non-zero difference of message word (marked by 1) appears.
If the collision event does not occur in the step where the last non-zero difference of message
word appears, it is impossible to get a collision characteristic, because the the last message
word of non-zero difference influences working variables in next steps. By this observation, we
could construct a collision producing characteristic step by step from the last step through the
backward direction (note that this last step is in the fourth round, and leads to a collision).

In this backtracking (starting from all working variables of zero differences), we assume that
for any 32-bit differences α and β, a probability that α ⊕ β = 0 is 2−32 and a probability that
α⊕ β = any γ is 1− 2−32, where α, β and γ are all nonzero differences.

One example for above process is as follows. Suppose a message difference vector used in
4-th round is “11001000000100011000”, which is determined by the message re-ordering of 4-th
round. First, second, 11-th, and 12-th difference bits among the above difference vector shows
whether each expanded message word has a non-zero difference or not. The remained 16 bits
correspond to differences of the 16 original message words.

Given the above message difference vector, we can do the backtracking for this message
difference vector as shown in table 6 and each element of table 6 denotes that ‘1’ is a non-
zero difference and ‘0’ is the all zero difference. In the given message difference vector, last
nonzero bit is the 17-th bit. That the 17-th bit is 1 means that the input message word of 38-th
step is the last message word of non-zero difference. Note that we only consider a collision
characteristic. Thus the difference of the message word of 38-th step should be blocked and
the difference of all working variable from 39-step should be zero because there is no message
word of non-zero difference from 38-th step to the last step. So we know that the difference
of input working variable a of 38-th step is only non-zero and differences of the others are
all zero. Moreover the difference of working variable a of 38-step should equal to the input
message difference of 38-th step. By our assumption, the probability that a difference of the
input working variable a of 38-th step is offset by the input message difference of 38-th step is
2−32. Likewise, we can backtrack collision characteristics up to 33-step as described in table 6.
The number of difference which is offset by message words and working variables of non-zero
differences is eight, so the probability that a message pair with the above difference vector
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satisfies this characteristic is (2−32)8 = 2−256. In table 6, if the difference of working variable
can be zero or nonzero, it is backtracked until the differences of working variables are offset by
the differences of other working variables or message words.

Based on this assumption, we investigated all the cases for 220 message difference vectors
except for Fact 1 and 2 of section 6.1. Note that once a difference vector of a round is chosen,
difference vectors of other rounds are automatically determined by the re-ordering of message
words. And we found that there is no collision producing characteristic which has a probability
higher than 2−256 in last two rounds. Even though an attacker can control the input message
words through the first 2 rounds by the message modification technique, this result supports
that the compression function of ARIRANG-256 guarantees the full 128-bit security against the
collision attack. With a similar analysis, it is expected that the compression function of ARI-
RANG-512 guarantees the full 256-bit security against the collision attack.

Security of the domain extension of ARIRANG against collision attack. ARIRANG uses
different counter values in order to process each message block during the computation of the
final hash value digest of a message. Although the domain extension of ARIRANG is different
from the Merkle-Damg̊ard construction, it is similarly proved that the domain extension of
ARIRANG preserves collision-resistance; in our security evaluation the compression function of
ARIRANG resists against the collision attack, thus we expect that the hash function ARIRANG
guarantees the full n/2-bit security against the collision attack, where n is the output size of
the compression function.

6.3 Pseudo Collision Finding Attack

We use the term “Pseudo collision” if two different initial values IV , IV ′ and (possibly identi-
cal) input messages M , M ′ are given such that H(IV,M) = H(IV ′, M ′). Pseudo collisions are
of much less practical importance than collisions. However, pseudo collision attack is a powerful
attack where an attacker can control the initial value of a hash algorithm, because there could
be some applications which require the underlying hash function to have pseudo collision re-
sistance. In 1993, Bert den Boer and Antoon Bosselaers showed how pseudo-collisions of MD5
compression function could be found [12]. In Eurocrypt 2008, Lei, Wang et al. introduced a
related-key attack on NMAC-MD5 using a pseudo-collision [30].

There are two kinds of pseudo-collision attacks. One is the pseudo-collision attack in for-
ward direction. The other is the pseudo-collision attack in backward direction. In the case of
forward direction, the first round is focused. More precisely, an attacker first makes collisions
after the first round by controlling differences of initial values and of messages (this first-round
differential characteristic has a form of all zero input/output differences at all steps except
for the first a few steps). Next, an attacker finds a differential characteristic in the last three
rounds with zero input difference of working variables, where the final output difference of the
concatenated full-round differential characteristic should be the same as the difference of initial
values. On the other hand, in the case of backward direction, the last round is focused. More
precisely, an attacker first makes collisions before the last round by controlling differences of
hash values and of messages (this last-round differential characteristic has a form of all zero
input/output differences at all steps except for the last a few steps; note that this last-round
differential characteristic holds with a probability less than 1 unlike the above first-round dif-
ferential characteristic). Next, an attacker finds a differential characteristic in the first three
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rounds with zero output difference of working variables, where the final output difference of the
concatenated full-round differential characteristic should be the same as the difference of initial
values. In order to show the security of ARIRANG against these two types of pseudo-collision
attackers, we assume the following.

Assumption. Given a differential characteristic of the full rounds of ARIRANG, any attacker
can control message words and working variables in at most two rounds so that the message
words and working variables satisfy the differential characteristic with probability 1 for the
involved rounds. In the cases of MD5 and SHA-1, no known attack can control message words
and working variables beyond two rounds. Since ARIRANG was more securely designed than
MD5 and SHA-1 against such kind of technique generally called the message modification tech-
nique, this assumption is reasonable, which we thoroughly checked.

Pseudo-collision attack in forward direction. By the re-orderings of message schedules
for ARIRANG, there are six strategies of pseudo-collision attacks in forward direction as follows.

• ∆W0 ̸= 0, ∆W2 ̸= 0 and ∆Wi = 0 (i ̸= 0, 2): In this case, the last two words of ini-
tial values should have non-zero differences so that the differences of W0 and W2 can
be offset by the differences of the two words. Since our target is a pseudo-collision, the
output difference of the final step should be the same as the difference of initial values.
More precisely, the last two words of the final output difference are both non-zeroes and
the other words have all zero differences. Now, we want to compute an upper bound of
the probability of this kind of differential characteristics. By the backtracking method
introduced in Sect. 6.2, we can know that there are at least five conditions in the final
four steps, which means that the probability of the differential characteristic is at most
2−160(= 2−32·5) for ARIRANG-256. Therefore, ARIRANG-256 is secure against this pseudo-
collision-finding strategy. In the cases of other versions of ARIRANG, the security analysis
can be done in the same way.

As in the above case, ARIRANG is secure against the following five pseudo-collision-finding
strategies.

• ∆W0 ̸= 0, ∆W4 ̸= 0 and ∆Wi = 0 (i ̸= 0, 4).

• ∆W2 ̸= 0, ∆W4 ̸= 0 and ∆Wi = 0 (i ̸= 2, 4).

• ∆W1 ̸= 0, ∆W3 ̸= 0 and ∆Wi = 0 (i ̸= 1, 3).

• ∆W1 ̸= 0, ∆W5 ̸= 0 and ∆Wi = 0 (i ̸= 1, 5).

• ∆W3 ̸= 0, ∆W5 ̸= 0 and ∆Wi = 0 (i ̸= 3, 5).

Pseudo-collision attack in backward direction. By the re-orderings of message schedules
for ARIRANG, there are two strategies of pseudo-collision attacks in backward direction.
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• ∆W6 ̸= 0, ∆W12 ̸= 0 and ∆Wi = 0 (i ̸= 6, 12): W6 and W12 are used in the last two steps
of the 4-th round of ARIRANG. If ∆W6 ̸= 0 and ∆W12 ̸= 0, all output working variables
of the last step should have non-zero differences in order for the input difference of the
last two steps to be of zero difference. Since our target is a pseudo-collision, the output
difference of the final step should be the same as the difference of the initial values. Since
there are at least three conditions to make zero input difference and non-zero output
difference through the last two steps, the probability that the final output difference is
the same as the difference of initial values is at most (2−32)3 = 2−96 for ARIRANG-256.
Thus, the probability that a message pair satisfies a differential characteristic for the first
three rounds should be bigger than 2−32 to make a meaningful collision attack, which
seems to be infeasible. In the cases of other versions of ARIRANG, the security analysis
can be done in the same way.

• ∆W1 ̸= 0, ∆W11 ̸= 0 and ∆Wi = 0 (i ̸= 1, 11): As in the above case, ARIRANG is secure
against this pseudo-collision-finding strategy.

6.4 Near-Collision-Finding Attack

In Crypto 2004 and Eurocrypt 2005, Biham et al. introduced a near collision attack on SHA-0
and reduced SHA-1 [10, 11]. We say that two messages M and M ′ cause a near-collision for
a hash function H if the Hamming distance between H(M) and H(M ′) is small. Although
this attack is not as strong as a collision finder, a near collision attack sometimes serves as a
precursor to a full attack: some researchers have published collision attacks and key-recovery
attacks against HMAC and NMAC using a near collision attack [30].

Security of ARIRANG against the near-collision-finding attack. From the perspective of
the backtracking technique of ARIRANG, the near collision-finding attack can be regarded as a
pseudo-collision-finding attack. That is, the security of ARIRANG against near-collision-finding
attack can be guaranteed by the security of ARIRANG against the pseudo-collision-finding
attack.

6.5 Fixed-Point-Finding Attack

A fixed point for a compression function F is a pair (H i−1,M i) for which H i−1 = F (H i−1,M i).
This property allows an attacker to produce second preimages or collisions by iterating a fixed
point. A fixed point can be found in the compression functions based on the Davies-Meyer
construction, such as the SHA family, MD4, MD5, and Tiger. For the SHA and MD4/MD5
families, an attacker selects any message M i and then sets the previous value to be Feedforward
to all zero-bit sequence. An attacker can recover an input value H i−1 of the compression func-
tion, because the compression function is invertible. In case of the Davies-Meyer construction,
since all zero-bit sequence is the additive identity, an attacker can easily find fixed points. In
Eurocrypt 2005, John Kelsey and Bruce Schneier proposed the second preimage attack on the
Merkle-Damg̊ard construction using a fixed point or a multi-collision attack.

Security of ARIRANG against the fixed point attack. The compression function of
ARIRANG executes the Feedforward operation to compute the ith intermediate hash value H i

and also to update the eight working variables, a, b, c, d, e, f , g, and h with H i−1 after the first
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20 steps are completed. In other words, unlike the compression functions of SHA family, which
uses only one feedfoward operation in the compression function, the compression function of
ARIRANG uses the Feedforward operation two times. This characteristic of ARIRANG makes
the fixed point-finding attack infeasible.

6.6 First-Preimage-Finding Attack

A preimage attack on a cryptographic hash is an attempt to find a message that has a spe-
cific hash value. Onewayness is a basic property in a cryptographic system. A preimage
attack differs from a collision attack in the sense that a hash value is only given. Optimally,
a preimage attack on an n-bit hash function will take an order of 2n operations to be successful.

Security of ARIRANG against first preimage attack. The compression function of ARI-
RANG uses the Feedforward operation twice, which makes it very difficult to invert a given
hash value. Since the domain extension of ARIRANG preserves first preimage resistance of the
compression function, so we expect that ARIRANG guarantees the full n-bit security against
first preimage-finding attack, where n is the output size of the compression function.

6.7 Second-Preimage-Finding Attack

In Eurocrypt 2005, Kelsey and Schneier introduced a second preimage-finding attack on the
Merkle-Damg̊ard construction Strengthening with about the birthday attack complexity. Their
attack, which is based on expandable messages, works even when the compression function
is a random oracle of fixed input length. In the second NIST hash workshop in 2006, Rivest
proposed a new dithering method which are secure against Kelsey-Schneier attack and are more
efficient than methods using counters. However, in Eurocrypt 2008, Elena et al. devised a new
attack method to break the Rivest’s dithering method by utilizing a diamond-structure used in
the herding attack. Elena et al. also showed that when the size of the output of the compression
function is n-bit, at least 2n different values are needed to guarantee the full security against
their attack method, where the full security means n-bit security.

Security of ARIRANG against known second preimage-finding attack methods. ARI-
RANG uses the counter-masking method so that it guarantees the full n-bit security against
all known second preimage-finding attackers, where n is the output size of the compression
function.

6.8 Length-Extension Attack

Merkle-Damg̊ard Strengthening uses the specific padding pad for which pad(M) = M ||10k||
bint(|M |), where k is the smallest non-negative integer such that pad(x) is a multiple of d and
bini(x) means the i-bit binary representation of x. For example, t=64 for SHA-1, 224 and
256, t=128 for SHA-384 and 512. The extension attack on Merkle-Damg̊ard Strengthening
goes as follows. A key K is chosen uniformly at random from the set of keys. An attacker
makes a query M , then obtain the response z=MD(pad(K||M)). By the characteristic of the
structure for Merkel-Damg̊ard Strengthening, without any additional query, on the assumption
that the length of the key K is known, an attacker can forge the MAC value z∗ for the query

October 29, 2008 page 40



ARIRANG Designed by CIST

pad(K||M)||M ′ by computing z∗ = f(z||M ′||1||bin64(pad(K||M)||M ′)), where M ′ is any mes-
sage, |M ′|=d-65, d is the message block length of bits, and f is the compression function.

Security of ARIRANG against length-extension attack. In ARIRANG, the last counter
is always fixed as the 128-bit fixed counter and different from all other counters. In other
words, ARIRANG uses a prefix-free counter masking method so that there is little likelihood
of the length-extension attack on ARIRANG with the complexity less than the birthday attack
complexity.

6.9 Multicollision Attack

Since multicollision-finding attackers [22] can be used in Kelsey-Schneier’s second-preimage
attack [24] and Kelsey-Kohno’s herding attack [23] on Merkle-Damg̊ard Strengthening, the
security against multicollision-finding attackers is significant. However, till now, all known
methods that guarantee full security against multicollision-finding attackers are to make the
internal output size of a hash function at least two times bigger than that of hash output.
Wide-Pipe Hash and prefix-free chopMD are such examples. However, from the perspective of
practical implementation, the design of a hash function with a big internal size may reduce the
implementation efficiency and may require big memories and resources.

Security of ARIRANG against multicollision attack. Since the internal size of ARIRANG
is the same as the hash output size of ARIRANG, Joux’s multicollision-finding attack on the
Merkle-Damg̊ard Strengthening can be also applied to ARIRANG. On the other hand, multi-
collisions of ARIRANG does not support different types of attacks such as preimage attack and
second-preimage attack because ARIRANG uses counters.

6.10 Indifferentiability

The security notion Indifferentiability was introduced by Maurer et al. in TCC 2004 [26]. Since
the concept indifferentiability makes it possible to evaluate the security of domain extensions
against all possible generic attackers, under the assumption that the underlying function is a
random oracle or an ideal cipher, it is considered one of the significant notions of provable
security. In Crypto 2005, Coron et al. proved that the classical MD iteration is not indifferen-
tiable with random oracle model even if we assume that the underlying compression function
is a random oracle. But they have shown indifferentiability for prefix-free MD hash functions
or some other definitions of hash functions like HMAC construction, NMAC construction and
chop-MD hash function.

In this section, we provide the indifferentiable security of ARIRANG. For the security proof
of ARIRANG we follow the security proof technique of the Sponge construction shown in Euro-
crypt 2008 [6]. Here, we just describe the indifferentiable security bound of ARIRANG. For the
exact security proof, refer to the appendix A.2.

Indifferentiable Security of ARIRANG. We assume that the compression function of ARI-
RANG is a random oracle of fixed input length. Let N be the number of blocks of queried
messages. Then, for any adversary A, the indifferentiable security of ARIRANG is bounded
by N(3N − 1)/2n, where n is the output size of the compression function of ARIRANG. More
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precisely, there exists a simulator S (which simulates F ) such that for any adversary A, A
cannot differentiate (ARIRANG, F ) from (RO, S), where F is a FIL random oracle and RO is
a VIL random oracle.

6.11 Slide Attack

In 2008, Gorski, Lucks and Peyrin [17] provided a slide attack (which recovers the secret key
K) on a MAC construction based on Grindahl-256 and Grindahl-512. The slide attack is not
for a hash function itself, but for a MAC based on a hash function. The MAC construction
they considered is MAC(K,M) = H(K||M), where H is Grindahl-256 or Grindahl-512. The
slide attack is useful in the case that a hash function is constructed by just iterating a same
compression function without any modification.

Security of ARIRANG-based MAC against slide attack. ARIRANG uses a counter which
is increased by 1 every time to process each message block of a message, which makes it difficult
for an attacker to apply the slide attack to any ARIRANG-based MAC. And the formal PRF
security proof of H(K||M) is also given in the Appendix A.4.

6.12 Trapdoor-based Attack

A candidate hash algorithm for SHA-3 should have no trapdoor in any constants or tables used
in the algorithm. This is because a trapdoor may be used to make some attack easier. The
ARIRANG family have no trapdoor due to the following reasons.

• The sixteen constants in the message schedule : The role of constants prevents an at-
tacker from repeatedly using an unintended property of some successive steps, so that
the attacker can generalize it into the full steps of the compression function of ARIRANG.
So, we don’t care which values are used for the constants, but concern about varying
constants. Therefore, we insist that the sixteen constants have no trapdoor.

• The initial value : The security of ARIRANG does not depend on the initial value, because
the compression function of ARIRANG is believed to be secure against all known attacks
including the pseudo-collision-finding attack, by intensive security analyses in this section.

• The value P of the last counter : For the formal security proofs of the domain extension
of ARIRANG, the condition that P ≥ 255(= 264/29) is sufficient for ARIRANG-224/256 and
P ≥ 2118(= 2128/210) is sufficient for ARIRANG-384/512. In other words, we have only to
choose any P not equal to any counter numbers. That is, the security of ARIRANG does
not depend on the specific value of P . Therefore, we insist that such a P has no trapdoor.

6.13 Randomness Test

Randomness is an essential resource for cryptography. Since constructing an ideal random
number generator (RNG) which completely generates unpredictable and uncorrelated bit se-
quences is quite complex and takes a ridiculously high price, a pseudo-random number generator
(PRNG) is frequently used in the real world instead of a RNG. A PRNG is a deterministic
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algorithm which produces outputs that look truly random to an outside observer, and is ran-
dom enough for practical purposes. This means that nobody can computationally distinguish
a PRNG from a truly random source. Specially, a hash algorithm is a representative primitive
to construct a PRNG, and thus a good hash function must satisfy the randomness property.

In order for a hash function to be used as a PRNG, randomness tests should first be
conducted. One of randomness tests is statistical tests; the NIST statistical test suite [28]
is a statistical package consisting 16 tests that were developed to evaluate the randomness of
binary sequences. We carried out randomness tests for the ARIRANG family by using the NIST
statistical test suite for various configurations.

6.13.1 ARIRANG Data Sets

In this subsection, we present how we selected ARIRANG data sets to conduct the 16 NIST
statistical tests. In our simulation, 15 different data sets were selected for each of ARIRANG-256
and ARIRANG-512: a data set consists of 2048 samples which contain 1, 048, 576-bit sequences
each (1, 048, 576 bits are 220 bits, equivalently, approximately 2 Gbits). Consequently, 2048
(sample) × 1,048,576 (sequence) bits forms a data set, which are used for the 16 NIST statistical
tests. Note that random sequences needed to construct our data sets were generated by the
HAS-160 hash algorithm. Our 15 different data sets were made as follows (in our exposition
below, the hash value computed after several message blocks is referred as to an initial value,
and the next hash value after one more message block is referred as to a hash value).

• Three data sets for message avalanches. These data sets allow examining the sen-
sitivity of ARIRANG when a message is changed.

– A sample of data set 1.

1. Set D =an empty string, and an initial value IV = 0.

2. Generate a random sequence for a one-block message M , and compute the hash
value h by using IV and M . Set i = 0.

3. Compute M ′ = M ⊕ ei, and the hash value h′ by using IV and M ′, where ei is
a value of the bit-length |M | whose i-th bit is 1 and the rest are all zeroes.

4. D ←− D||(h⊕ h′), and i = i + 1.

5. If |D| < 1, 048, 576 and i is less than or equal to the one-block message bit-size,
then go to step 3. If |D| < 1, 048, 576 and i is larger than the one-block message
bit-size, then go to step 2. If |D| = 1, 048, 576, then output D as a sample of
data set 1.

– A sample of data set 2.

1. Set D =an empty string, an initial value IV = 0, and i = 0.

2. Generate a random sequence for a one-block message M , and compute the hash
value h by using IV and M .

3. Compute M ′ = M ⊕ ei, and the hash value h′ by using IV and M ′

4. D ←− D||(h⊕ h′).

5. If |D| < 1, 048, 576, then go to step 2. If |D| = 1, 048, 576, then output D as a
sample of data set 2 (for the next sample, set i = i + 1 mod one-block message
bit-size).
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– A sample of data set 3.

1. Set D =an empty string, an initial value IV = 0, i = 0, and j = 0.

2. Generate a random sequence for a one-block message M .

3. Compute M ′ whose words are all the same as those of M except for the j-th
word M ′

j = Mj + i, and compute the hash value h′ by using IV and M ′

4. D ←− D||h′.
5. If |D| < 1, 048, 576, then go to step 3 with i = i + 1. If |D| = 1, 048, 576, then

output D as a sample of data set 3 (for the next sample, set j = j + 1 mod
one-block message word-size).

• Three data sets for initial value avalanches. These data sets allow examining the
sensitivity of ARIRANG when an initial value is changed.

– A sample of data set 4. In the algorithm generating a sample of data set 1,
interchange the initial values and messages.

– A sample of data set 5. In the algorithm generating a sample of data set 2,
interchange the initial values and messages.

– A sample of data set 6. In the algorithm generating a sample of data set 3,
interchange the initial values and messages.

• A data set for correlations of initial and hash values. This data set allows exam-
ining correlations of initial and hash values for ARIRANG.

– A sample of data set 7.

1. Set D =an empty string, and generate a random sequence for a one-block mes-
sage M .

2. Generate a random sequence for an initial value IV , and compute the hash value
h by using IV and M .

3. D ←− D||(IV ⊕ h).

4. If |D| < 1, 048, 576, then go to step 2. If |D| = 1, 048, 576, then output D as a
sample of data set 7.

• Four data sets for random initial or random message values. These data sets
allow examining the randomness of ARIRANG when initial values or message values are
randomly selected.

– A sample of data set 8.

1. Set D =an empty string, and generate a random sequence for a one-block mes-
sage M .

2. Generate a random sequence for an initial value IV , and compute the hash value
h by using IV and M .

3. D ←− D||h.

4. If |D| < 1, 048, 576, then go to step 2. If |D| = 1, 048, 576, then output D as a
sample of data set 8.
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– A sample of data set 9. In the algorithm generating a sample of data set 8,
interchange the initial values and messages.

– A sample of data set 10.

1. Set D =an empty string, and M = 0.

2. Generate a random sequence for an initial value IV , and compute the hash value
h by using IV and M .

3. D ←− D||h.

4. If |D| < 1, 048, 576, then go to step 2. If |D| = 1, 048, 576, then output D as a
sample of data set 10 (for the next sample, set M = M + 1).

– A sample of data set 11. In the algorithm generating a sample of data set 10,
interchange the initial values and messages.

• Four data sets for low (or high) density initial or low (or high) density message
values. These data sets allow examining the randomness of ARIRANG when initial values
or message values are selected to have low or high hamming weights.

– A sample of data set 12.

1. Set D =an empty string and i = 1, and generate a random sequence for a
one-block message M .

2. Generate an initial value IV whose bit hamming weight is i, and compute the
hash value h by using IV and M .

3. D ←− D||h.

4. If |D| < 1, 048, 576 and all IV ’s are not generated in step 2, then go to step 2.
If |D| < 1, 048, 576 and all IV ’s are generated in step 2, then go to step 2 with
i = i + 1. If |D| = 1, 048, 576, then output D as a sample of data set 12.

– A sample of data set 13. In the algorithm generating a sample of data set 12,
interchange the initial values and messages.

– A sample of data set 14.

1. Set D =an empty string and i = 1, and generate a random sequence for a
one-block message M .

2. Generate an initial value IV whose bits are all 1’s except for i bit(s), and
compute the hash value h by using IV and M .

3. Compute D = D||h.

4. If |D| < 1, 048, 576 and all IV ’s are not generated in step 2, then go to step 2.
If |D| < 1, 048, 576 and all IV ’s are generated in step 2, then go to step 2 with
i = i + 1. If |D| = 1, 048, 576, then output D as a sample of data set 14.

– A sample of data set 15. In the algorithm generating a sample of data set 14,
interchange the initial values and messages.

6.13.2 Results of NIST Statistical Tests for ARIRANG

For each of the 16 NIST statistical tests, we set the significance level to be 0.01, which implies
that, ideally, no more than 20.48 out of 2,048 samples should be rejected in each data set
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evaluated by the statistical tests. (Note that the significance level 0.01 is applied to both data
sets and each sample in them.) However, some given data sets may not follow this ideal case.
Thus, we adopted one of the two approaches presented in the NIST special publication 800-22
[28]: the first approach is on the proportion of samples that pass statistical tests, and the
second approach is on the distribution of P -values to check for uniformity. In the case of the
first approach which we employed, the maximum number of samples that are expected to be
rejected at the chosen significance level is computed by using following formula:

s×

(
α + 3×

√
α(1− α)

s

)
,

where s is the sample size and α is the significance level. This formula is with reliability rate
0.9987. Since s = 2, 048 and α = 0.01 in our setting, the number of rejected samples should not
exceed 33.99 for a data set. We experimentally conducted the NIST statistical tests on our data
sets of ARIRANG-256 and ARIRANG-512, resulting that the number of rejected samples was less
than 34 for any statistical test on any data set. Thus, the output sequences of ARIRANG is
expected to be pseudorandom sequences at the significance level 0.01.

7 Construction to support HMAC, PRF, and Random-

ized Hashing

In this section, it is shown that the domain extension of ARIRANG provides the formal security
proofs of HMAC-ARIRANG, two PRF constructions based on ARIRANG and Randomized Hash-
ing with ARIRANG, under the assumption that the compression function of ARIRANG satisfies
some security notions which will be described in this section. The security of the compression
function of ARIRANG is justified by the intensive security analysis of the compression function
of ARIRANG in Sect. 6.

7.1 HMAC-ARIRANG

HMAC is the MAC construction from a hash function, which was designed by Bellare, Canetti
and Krawczyk in Crypto 1996 [5]. When H is a hash function, HMAC(K,M) = H((K∗ ⊕
opad)||H((K∗ ⊕ ipad)||M)), where ipad and opad are constants, and K∗ = K||0t where t is the
smallest non-negative integer such that |K∗| is a block size.

In Crypto 1996, Bellare, Canetti and Krawczyk proved the security of HAMC, on the as-
sumption that the hash function is weakly collision-resistant and the keyed compression function
is RKA-pseudorandom [5]. In Crypto 2006, Bellare improved their security proof: the security
of HMAC is guaranteed only with the RKA-pseudorandomness of the keyed compression func-
tion, where the hash function is based on Merkle-Damg̊ard construction. On the other hand,
the domain extension of ARIRANG is not Merkle-Damg̊ard construction because of counter. So,
the Bellare’s proof of HMAC cannot be directly applied to HMAC-ARIRANG in Fig. 9.

We prove that the structure of HMAC-ARIRANG is secure if the compression function meets
some security assumptions. For the details of proof, see the Appendix A.3.
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Figure 9: HMAC-ARIRANG : For t = 224, trunt denotes the right-most 32-bit truncation. For
t = 384, trunt denotes the right-most 128-bit truncation.

Security of HMAC-ARIRANG. For any prf-adversary A with q queries, there exist ad-

versaries BA, CA, DA, EDA
as follows, where HMACpfCM0−MD

f
pad(IV,⋆) denotes HMAC-ARIRANG

and f is the compression function of ARIRANG.

Advprf

HMAC
pfCM0−MD

f
pad

(IV,⋆)
(A) ≤ Advrka-prf

f(⋆,K||0b−n),Φ1
(BA) + Advprf

f(K,⋆)(CA)

+ q(q−1)(t+t′−1)
2

Advrka-prf
f(K,⋆),Φ2

(EDA
) + q(q−1)

2n+1 ,

here, BA, CA and DA are defined in Fig. 19, and EDA
is defined in Fig. 20. Φ1 = {ϕipad, ϕopad}

where ϕipad(x) = x ⊕ ipad and ϕopad(x) = x ⊕ opad. BA can only make two (IV, ϕipad) and
(IV, ϕopad) queries, and CA can make at most q queries. For any output (M,M ′) of DA,
||pad1(M)||b ≤ t and ||pad1(M

′)||b ≤ t′. t∗ = max(t, t′), Φ2 = {ϕ1, · · · , ϕt∗ , ϕP} where ϕi(x) =
x⊕ i. And EDA

can only make at most two (Mi, ϕ) and (M ′
j, ϕ
′) queries, where Mi and M ′

j are
any value of b-bit, and ϕ, ϕ′ ∈ Φ2.

7.2 PRF Constructions based on ARIRANG

We propose two alternative PRF constructions. One is the case that IV of ARIRANG is re-
placed with a key. The other is the case that the first message block of ARIRANG is made
from a key like the first message block of HMAC-ARIRANG. In Fig. 10, K∗ = K is the key.
In Fig. 11, K∗ = K||10t, where t is the smallest non-negative integer such that |K||10t| is a
multiple of the bit-size of a message block b. In cases of ARIRANG-224 and 256, b=512, in cases
of ARIRANG-384 and 512, b=1024.

We prove that two constructions are PRFs under some assumptions of the compression
function. For the details of proof, see the Appendix A.4. The security proofs of them are
similar to those of [4].

Security of PRF Construction 1. For any prf-adversary A with q queries, there exist ad-
versaries FA and HA as follows, where pfCM0 −MD

f
pad(IV,K||⋆), which is explained in the

Appendix A.1, denotes the PRF Construction 1 in Fig. 10.
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Figure 11: PRF Construction 2

Advprf

pfCM0−MDf
pad(IV,K||⋆)

(A) ≤ l ·Advmulti-rka-prf
f(K,⋆),Φ3

(HA) + Advprf
f(⋆,K||0b−n)

(FA),

where FA and HA are defined in Fig. 22. FA can only make the query IV , and HA can make
at most q queries. We assume that for each query M of A, the b-bit block length of pad1(M) is
at most l. Φ3 = {ϕ1, · · · , ϕl, ϕP} where ϕi(X) = X ⊕ i and P is the last counter of pfCM-MD.
{ϕ1, · · · , ϕq} ⊂ {ϕP , ϕj} for some j where (it, ϕt, X t) is t-th query of HA. In other words, even
though HA can make queries to any one of {O1, O2, · · · , Oq}, HA can use at most two related-
key-deriving (RKD) functions ϕ’s from Φ3.

Security of PRF Construction 2. PRF Construction 2 in Fig. 11 corresponds to pfCM0-
MDf

pad(IV,K||⋆), which is explained in the Appendix A.1. Here, we only provide the security

of pfCM1-MDf
pad(IV, K||⋆), which is described in detail in the Appendix A.4. In the case of

pfCM0 −MD
f
pad(IV, K||⋆), its security proof can be done in the same way.

For any prf-adversary A with q queries, there exists an adversary HA such that

Advprf

pfCM1−MDf
pad1

(K,⋆)
(A) = l ·Advmulti-rka-prf

f(K,⋆),Φ3
(HA),

where HA is defined as above.

7.3 Randomized Hashing based on ARIRANG

Draft NIST SP 800-106 describes a randomizing hashing for digital signatures [18]. More
precisely, Draft NIST SP 800-106 defines a randomization method for randomizing messages
prior to hashing. That is, the randomized method works independently from a hash function.
There is only a restriction on the hash function, which should process messages in the usual
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left-to-right order. ARIRANG is such an example. When H = {Hr(IV, ⋆}r∈R is a hash fam-
ily, the security of the randomized hashing is measured by the following game : an adversary
A chooses M in advance, then a random string r is given to A, and A tries to find (r′,M ′)
such that Hr(IV,M) = Hr′(IV,M ′) and (r,M) ̸= (r′,M ′). The measurement of this game is
formally defined by the definition of eTCR (which is described in the Appendix A.1). In this
Section, we show that ARIRANG with the randomizing hashing in the Draft NIST SP 800-106
is secure if the compression function meets a security assumption. For the details of proof, see
the Appendix A.6.

Security of ARIRANG with the message randomization in NIST SP 800-106. For
any eTCR-adversary A, there exists a SPR†-adversary BA such that

AdveTCR
H (A) ≤ l ·AdveSPR†

H (BA),

where H = {pfCM0 −MD
f
pad(IV, mr(r, ⋆))}r∈∪80≤i≤1024{0,1}i , and mr is the message randomiza-

tion function in NIST SP 800-16. BA is defined in Fig. 25 in the Appendix A.6. l is defined in
Fig. 25 in the Appendix A.6.

In the Appendix A.6, it is shown that the eTCR security of ARIRANG with the message ran-
domization in NIST SP 800-106 is reduced to the eSPR†6 security of ARIRANG with the message
randomization in NIST SP 800-106. When f is the compression function of ARIRANG, eSPR†

security of ARIRANG with the message randomization in NIST SP 800-106 largely depends on
the security of f . See the definition of eSPR†-advantage as follows.

Definition 7.1 [eSPR†-advantage]. Given a hash family H = {Hr(IV, ⋆)}r∈R, for each r we
let Hr(IV, M)[i] be the input value of i-th compression function during the computation of
Hr(IV, M), that is, Hr(IV,M)[i] = (c,m), where c ∈ {0, 1}n, m ∈ {0, 1}b, M ∈ {0, 1}∗, and
Hr : {IV }×{0, 1}∗ → {0, 1}n is based on a compression function f : {0, 1}n×{0, 1}b → {0, 1}n.
Then, for any eSPR†-adversary A, the eSPR†-advantage of A on a hash family H is defined as
follows,

AdveSPR†

H (A) = Pr[(M, State)
$← A; r

$←R; i
$← [1, l]; (c′,m′)

$← A(i, r,M, State)
: (c,m) = Hr(IV,M)[i] and (c,m) ̸= (c′,m′) and f(c,m) = f(c′,m′)],

where l = Lenf (Hr(IV, M)) is the number of computations of the compression function f when
computing Hr(IV, M) for any r, where M is generated by the adversary A.

Relation between a Security of Compression function of ARIRANG and eSPR† Se-
curity of ARIRANG with the message randomization in NIST SP 800-106. In the
definition of eSPR†-advantage, the eSPR† security of H is very similar to the second preimage
resistance (SPR) security of f . In the case of SPR security of f , given a random input (c,m),
it should be difficult for any adversary to find a different (c′,m′) such that f(c,m) = f(c′,m′).
Here, (c,m) has (n+b)-bit entropy. On the other hand, in the case of eSPR† security of H, given
an input (c,m) (which is generated from a random string M and r, where r has |r|-bit entropy),
it should be difficult for any adversary to find a different (c′,m′) such that f(c,m) = f(c′,m′).
In Sect. 6, it is already shown that the compression function of ARIRANG is secure against all
known collision-finding attacks and the second-preimage finding attacks. Therefore, we insist
that ARIRANG with the message randomization in NIST SP 800-106 is eTCR-secure.

6eSPR† is similar to eSPR, which is defined in [18].
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8 Security of Cryptographic Applications based on ARI-
RANG

8.1 Security of Digital Signatures based on ARIRANG

FIPS PUB 186-2 describes digital signature standards (DSS), where a collision resistant hash
function is required to guarantee the security of DSS. ARIRANG is designed to guarantee the
security against all known collision-finding attacks by intensive security analysis in the previous
section and all the parameters are the same as that of SHA-2. Therefore, ARIRANG is suitable
for DSS.

8.2 Security of Key Derivation based on ARIRANG

NIST special publication 800-56A describes key derivation functions (KDF) based on a hash
function. Any key derivation function is used to derive secret keying material from a shared
secret. Secret keying material means a symmetric key, a secret initialization vector, or a master
key which is used to generate other keys. The process of KDF in the document is as follows:
(See the page 49 of NIST SP 800-56A for details.)

1. reps = ⌈keydatalen/hashlen⌉.

2. If reps > (232 − 1), then ABORT : output an error indicator and stop.

3. Initialize a 32-bit, big-endian bit string counter as 0000000116.

4. If counter||Z||OtherInfo is more than max hash inputlen bits long, then ABORT :
output an error indicator and stop.

5. For i = 1 to reps by 1, do the followings:

(a) Compute Hashi=H(counter||Z||OtherInfo).

(b) Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

6. Let Hhash be set to Hashreps if (keydatalen/hashlen) is an integer, otherwise, let Hhash
be set to the (keydatalen mod hashlen) leftmost bits of Hashreps.

7. Set DerivedKeyingMaterial = Hash1||Hash2|| · · · ||Hashreps−1||Hhash.

In the above process, H is a hash function, Z is a shared secret, and OtherInfo is known
fixed value. Counter is a changeable input variable. Then, the concatenation of hash outputs
is used as secret keying material. In the Appendix A.5, it is shown that the pseudorandomness
of KDF-ARIRANG is reduced to the RKA-pseudorandomness and pseudorandomness of the
compression function of ARIRANG. When f is the compression function of a hash function, two
types of (RKA-)pseudorandomness of the compression function are required for the security of
KDF-ARIRANG as follows, where each security definition is described in the Appendix A.1:

• [R1] Advmulti-rka-prf
f(K,⋆),Φ4

(A) is negligible for any multi-rka-prf-adversary A, where A can use at

most two related-key-deriving (RKD) functions ϕ’s from Φ4, where Φ4 = {ϕ1, · · · , ϕl, ϕP}
, ϕi(X) = X⊕i and P is the last counter of ARIRANG, and we assume that {ϕ1, · · · , ϕq} ⊂
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{ϕP , ϕj} for some j, where (it, ϕt, X t) is t-th query of A. In other words, even though
A can make queries to any one of {O1, O2, · · · , Oq}, A can use at most two related-key-
deriving (RKD) functions ϕ’s from Φ4.

• [R2] For any prf-adversary A with at most q queries, Advprf
f(IV,⋆32||K||⋆b−n−32)(A) is negli-

gible, where ⋆i denotes any i-bit string and b is the bit size of a block.

Two types of pseudorandomness of the compression function of ARIRANG. In the
previous section, we insist that the compression function is resistant against all known attacks.
Our security analysis also implies that the compression function of ARIRANG is secure against
above pseudorandomness-breaking attackers.

8.3 Security of Hash-based Message Authentication Codes based on
ARIRANG

FIPS PUB 198 describes the keyed-hash message authentication code (HMAC). In the Appendix
A.3, it is shown that the pseudorandomness of HMAC-ARIRANG is reduced to the RKA-
pseudorandomness and pseudorandomness of the compression function of ARIRANG. When
f is the compression function of ARIRANG, three types of (RKA-)pseudorandomness of the
compression function are required for the security of HMAC-ARIRANG as follows, where each
security definition is described in the Appendix A.1:

• [R1] Advrka-prf
f(·,K||0b−n),Φ1

(A) is negligible for any rka-prf-adversary A, where A can only make

two (IV, ϕipad) and (IV, ϕopad) queries, and Φ1 = {ϕipad, ϕopad} where ϕipad(x) = x ⊕ ipad
and ϕopad(x) = x⊕ opad

• [R2] For any prf-adversary A with at most q queries, Advprf
f(K,·)(A) is negligible.

• [R3] Advrka-prf
f(K,·),Φ2

(A) is negligible for any rka-prf-adversary A, where A can only make

at most two (Mi, ϕ) and (M ′
j, ϕ
′) queries, where Mi and M ′

j are any value of b-bit, and
ϕ, ϕ′ ∈ Φ2, and Φ2 = {ϕ1, · · · , ϕt∗ , ϕP} where ϕi(x) = x ⊕ i, and t∗ = max(t, t′), where
||pad1(M)||b = t and ||pad1(M

′)||b = t′.

Three types of pseudorandomness of the compression function of ARIRANG. In the
previous section, we insist that the compression function is resistant against all known attacks.
Our security analysis also implies that the compression function of ARIRANG is secure against
above pseudorandomness-breaking attackers.

8.4 Security of Deterministic Random Bit Generators based on ARI-
RANG

NIST special publication 800-90 describes two deterministic random bit generators from a hash
function. One is Hash DRBG and the other is HMAC DRBG. In the case of Hash DRBG,
counters are used for generating pseudorandom bits, where each counter is xored with secret
internal values. So, the pseudorandomness of the output string of Hash DRBG largely depends
on counters. On the other hand, in the case of HMAC DRBG, once a random seed is deter-
mined, the value of the key of HMAC is not changed till the seed is updated. Therefore, the
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pseudorandomness of the output string of HMAC DRBG can be reduced to the pseudorandom-
ness of HMAC.

Security of Hash DRBG based on ARIRANG. Once a random seed is fixed, the maximum
bit-length of output pseudorandom string is bounded by 219. In other words, the random seed
should be changed before the output string exceeds 219 bits. For example, in the case of ARI-
RANG-256, since ARIRANG-256 outputs a 256-bit hash value for each counter, the counter is
bounded by 211. Likewise, the counter is bounded by 210 in the case of ARIRANG-512. More
precisely, an output pseudorandom bit string is leftmost W bits of H(Z)||H(Z+1)|| · · · ||H(Z+
211−1), where Z is a random secret value determined by the random seed, H is ARIRANG, and
W is the required length of the pseudorandom bit string. For example, when |Z| = 256, the
computation of each H(Z + i) is that of one compression function. As described in Sect. 6, we
have done random tests for security of Hash DRBG based on ARIRANG. Therefore, based on
the random tests, we argue that Hash DRBG-ARIRANG is a secure deterministic random bit
generator.

Security of HMAC DRBG based on ARIRANG. The security of HMAC DRBG-ARIRANG
depends on the pseudorandomness of HMAC-ARIRANG [20]. Since we have shown the security
of HMAC-ARIRANG in Sect. 7 and 8, we argue that HMAC DRBG-ARIRANG is a secure
deterministic random bit generator.

9 Implementation and Efficiency

9.1 Software Implementation

ARIRANG is suited to be efficiently implemented on a wide range of processors. We implemented
on 8-bit processors for sensor network, and on 32-bit and 64-bit processors for PCs. ARIRANG
consists of SubBytes (table lookup), MDS, XOR (⊕), and left rotation (≪).

9.2 8-bit processors

ARIRANG was implemented on the MICAz sensor mote, with an ATmega128L 8-bit micropro-
cessor, 7.37 MHz clock speed, 128 KByte flash ROM and 4 KByte SRAM running on TinyOS
1.1.0Jan. Using Nesc 1.1.2a, we performed simulations on ARIRANG.

To reduce the operation of MDS transformation, we used four S-boxes: {01} · S-box(i),
{02} · S-box(i), {04} · S-box(i), {08} · S-box(i). In the 8-bit processor, the speed of table
look-up is normally slower than a finite field multiplication.

The code size and required memory are given in Table 7. For a strict estimation, the code
and memory for TinyOS and communication are excluded.

The execution times of ARIRANG using one S-box are given in Table 8 (the measurements
are based on cycles per message or on cycles per byte for various message lengths and digest
lengths).

The execution times of ARIRANG using four S-boxes are given in Table 9.
Our simulation results offer the fact that the implementation using one S-box is better than

that using four S-boxes in terms of memory and efficiency. The algorithm set-up time is the
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Table 7: Code size and required memory of ARIRANG on an 8-bit processor

Algorithm ROM (Byte) RAM (Byte)

ARIRANG using one S-box 34684 448
ARIRANG using four S-box 40940 1216

Table 8: Execution times of various message lengths for ARIRANG using one S-box on an 8-bit
processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224
8 41170 5146 16 41178 2574
32 41652 1302 64 81234 1269
128 121252 947 1024 681924 666

ARIRANG-256
8 41242 5155 16 41254 2578
32 41724 1304 64 81286 1270
128 121364 948 1024 682140 666

ARIRANG-384
8 96716 12090 16 96756 6047
32 97185 3037 64 97752 1527
128 192934 1507 1024 865823 846

ARIRANG-512
8 97031 12129 16 96985 6062
32 97487 3046 64 97958 1531
128 193158 1509 1024 866383 846

Table 9: Execution times of various message lengths for ARIRANG using four S-boxes on an
8-bit processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224
8 43436 5430 16 43452 2716
32 43922 1373 64 85739 1340
128 128055 1000 1024 720518 704

ARIRANG-256
8 43508 5439 16 43524 2720
32 43994 1375 64 85811 1341
128 128127 1001 1024 720591 704

ARIRANG-384
8 116921 14615 16 116926 7308
32 117407 3669 64 117907 1842
128 233248 1822 1024 1047665 1023

ARIRANG-512
8 117196 14649 16 117262 7329
32 117682 3678 64 118182 1847
128 233522 1824 1024 1047940 1023
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time required to generate S-box. In an 8-bit implementation, algorithm set-up takes no time
because S-box was precomputed and internally stored.

9.3 32-bit processors

The SubBytes and MDS transformations can be expressed with XOR operations and table
lookups as in the optimized AES code. Thus, in the case of ARIRANG-256, the SubBytes and
MDS transformations are simultaneously implemented with 3 XORings and 4 table lookups
whose input and output sizes are 8 bits and 32 bits, respectively. In the case of ARIRANG-512,
the SubBytes and MDS transformations are simultaneously implemented with 28 XORings and
16 table lookups whose input and output sizes are also 8 bits and 32 bits, respectively. This
implementation technique allows a high efficiency on processors with word size 32 bits or above.

We performed simulations on ARIRANG (along with SHA-256) with the following platform:
Intel personal computer, with an Intel Core 2 Duo Processor, 2.53 GHz clock speed, 2 GB
RAM, running Windows Vista Ultimate 32-bit (x86) Edition. Using the ANSI C compiler in
the Microsoft Visual Studio 2005 Professional Edition, we executed 10 simulations: in each
simulation various messages from 8 bytes to 10 megabytes are hashed 1,000,000 times to check
the throughput of ARIRANG (our simulation results below are on the average case).

The simulation results of ARIRANG-256 and -224 are almost same, because two algorithms
are same except for their initial values and the message digest sizes. This fact is also applied
to ARIRANG-512 and -384. Table 10 lists our implementation results for ARIRANG and for
SHA-256 on a 32-bit processor. Our results show that ARIRANG-256 and -224 are suited to
implement on a 32-bit processor.

Table 10: Speed comparison between ARIRANG family and SHA-256 on a 32-bit processor

Algorithm ARIRANG-224 ARIRANG-256 ARIRANG-384 ARIRANG-512 SHA-256

Mbps 893 899 297 296 712

As illustrated in Figure 12, the speed of ARIRANG-256 is about 25% faster than SHA-256.
The execution times of ARIRANG and SHA-256 in cycles per message and cycles per byte

for various message lengths and digest lengths are given in Table 11.
To reduce memory usage, we also implemented for the following additional two versions.

• Version using one S-box. it uses one original S-box whose input and output sizes are 8
bits for SubBytes. The MDS transformation is computed through the field multiplication.

• Version using seven S-boxes. it uses seven S-boxes whose input and output sizes
are 8 bits for the MDS transformation, {01} · S-box(i), {02} · S-box(i), {03} · S-box(i),
{04} · S-box(i), {08} · S-box(i), {09} · S-box(i), {0A} · S-box(i).

In the case of ARIRANG-256, it recorded 22 cycles per byte in optimized version, 93 cycles
per byte in one S-box version and 48 cycles per byte in seven S-box version. Figure 14 represents
our implementation result of each version of ARIRANG-256. The rest of our results are given
in Appendix C.
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Figure 12: Performance of ARIRANG-256 and SHA-256 on a 32-bit processor
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Figure 13: Cycles per byte of ARIRANG-256 and SHA-256
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Table 11: Execution times of various message sizes for ARIRANG and SHA-256 on a 32-bit
processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224

8 1462.3 182.8 16 1462.3 91.4
32 1481.3 46.3 64 2727.3 42.6
128 4051.8 31.7 256 6758.9 26.4
512 11759.4 23 1024 22137.5 21.6
1M 20981290 20 10M 210306250 20.1

ARIRANG-256

8 1462.3 182.8 16 1482.6 92.7
32 1463.6 45.7 64 2747.6 42.9
128 4012.6 31.3 256 6700.7 26.2
512 11740.5 22.9 1024 21998.4 21.5
1M 20961050 20 10M 210306250 20.1

ARIRANG-384

8 9269.9 1158.7 16 9348.4 584.3
32 9171.3 286.6 64 9210.5 143.9
128 16405.8 128.2 256 23383.5 91.3
512 37594.5 73.4 1024 66630.1 65.1
1M 58011635 55.3 10M 579129650 55.2

ARIRANG-512

8 9507.7 1188.5 16 9528 595.5
32 9409.1 294 64 9388.8 146.7
128 16543.7 129.2 256 23501.2 91.8
512 37771.6 73.8 1024 66768 65.2
1M 58021755 55.3 10M 579129650 55.2

SHA-256

8 1767 220.9 16 1771 110.7
32 1786.7 55.8 64 3415.5 53.4
128 5044.1 39.4 256 8337.1 32.6
512 14752.9 28.8 1024 27758.7 27.1
1M 26592830 25.4 10M 266679710 25.4
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Figure 14: Cycles per byte in each version of ARIRANG-256

In each version, a required memory for S-box and algorithm set-up time are given in Table
12. If S-box was precomputed and stored internally like an 8-bit implementation, algorithm
set-up takes no time.

Table 12: Set-up time and required memory of ARIRANG family on a 32-bit processor

Algorithm Cycles Required memory (Bytes)

ARIRANG family (optimized) 35660 20480
ARIRANG family using one S-box 4796 256

ARIRANG family using seven S-box 11945 1792

9.4 64-bit processors

In a 64-bit implementation, in the case of ARIRANG-256, the SubBytes and MDS transforma-
tions are simultaneously implemented with 3 XORings and 4 table lookups whose input and
output sizes are 8 bits and 32 bits, respectively. In the case of ARIRANG-512, the SubBytes
and MDS transformations are simultaneously implemented with 7 XORings and 8 table lookups
whose input and output sizes are 8 bits and 64 bits, respectively.

ARIRANG was implemented on the same platform with the 32-bit platform, but running on
Windows Vista Ultimate 64-bit (x64) Edition.

Table 13 lists our implementation results of ARIRANG and SHA-512 on a 64-bit processor.
The simulation results of ARIRANG-512 and -384 are almost same, showing that ARIRANG-

512 and -384 are designed to be optimized on a 64-bit processor. As illustrated in Figure 15,
the speed of ARIRANG-512 is about 25% faster than SHA-512.

Execution times of ARIRANG in cycles per message and cycles per byte for various message
lengths and digest lengths are given in Table 14.
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Table 13: Speed comparison of ARIRANG and SHA-512 on a 64-bit processor

Algorithm ARIRANG-224 ARIRANG-256 ARIRANG-384 ARIRANG-512 SHA-512

Mbps 1197 1198 1503 1497 1195
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Figure 15: Performance of ARIRANG-512 and SHA-512

Similarly to the 32-bit implementation, we implemented for additional two versions. In the
case of ARIRANG-512, it recorded 11 cycles per byte in optimized version, 344 cycles per byte
in one S-box version and 204 cycles per byte in seven S-box version. Figure 16 represents our
implementation result of each version of ARIRANG-512. The rest of our simulation results are
given in Appendix C.

In each version, a required memory for S-box and algorithm set-up time of ARIRANG are
given in Table 15. If S-box was precomputed and stored internally like the 8-bit and 32-bit
implementations, algorithm set-up takes no time.
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Appendix A

We denote the domain extension of ARIRANG by a prefix-free-Counter-Masking-MD (pfCM-
MD). In Appendix A.1, we introduce notations, definitions, and known results for security
proofs. In Appendix A.2, we give the indifferentiable security proof on the pfCM-MD. In
Appendix A.3, we provide a prf security of HMAC based on the pfCM-MD. In Appendix A.4,
we define two prf constructions based on the pfCM-MD and prove the prf security of them. In
Appendix A.5, we provide a prf security of NIST SP 800-56A key derivation function based
on the pfCM-MD. In Appendix A.6, we provide eTCR security analysis of pfCM-MD with the
message randomization function (in short, mr) in NIST SP 800-16. Our proof technique and
most of notations follow those in [6, 3, 4].

A.1. Notations, Definitions and Known Results

Here we consider the compression function f : {0, 1}n × {0, 1}b → {0, 1}n. We write ||m||b = k
if m ∈ {0, 1}kb. That is, m is a message of k b-bit blocks. We denote the set of all functions
from the domain C to the codomain D by Maps(C,D).

Padding. We say any injective and length-consistent function pad : {0, 1}∗ → ({0, 1}b)∗ as a
padding rule.

MD [27, 16]. The traditional Merkle-Damg̊ard extension (MD) works as follow: for a message
M , pad(M) = m1|| · · · ||mt and MDf

pad(IV, M) = f(· · · f(f(IV, m1), m2) · · · , mt), where f is a
compression function and IV is the initial value.

pfCM-MD. CM-MD (MD with a counter-masking) works similar to MD as follow : for given
a message M , pad(M) = m1|| · · · ||mt and CM-MDf

pad(IV,M)=CM-MDf (IV ,pad(M)) = f( · · ·
f( f( IV ⊕c0,m1)⊕c1,m2)⊕c3, · · · ,mt). For any two c = c0|| · · · ||ct−1 and c′ = c′0|| · · · ||c′t′−1, if
c is not a prefix of c′, then we say its counter-masking is prefix-free. So, pfCM-MD means prefix-
free-Counter-Masking-MD. In [14], they considered a special case that for any c = c0|| · · · ||ct−1,
where c0 = 0 and ci+1 = ci + 1 for 0 ≤ i ≤ t− 3 and ct−1 = P , where P is a fixed value bigger
than other counter cj’s. For example, when the maximum bit-size of an input message is 264−1,
P can be any value larger than or equal to 264. When the maximum bit-size of an input message
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is 2128 − 1, any value P can be any value larger than or equal to 2128. In this document, in
the case that c0 = d and ci+1 = ci+1 for 0 ≤ i ≤ t−3 and ct−1 = P , we denote it by pfCMd-MD.

chop. For 0 ≤ s ≤ n we define chops(x) = xL where x = xL ∥ xR and |xR| = s.

pfCM-chopMD. pfCM-chopMDf
pad(IV, M) = chops(pfCM-MDf

pad(IV, M)). Note that pfCM-
chopMD with s = 0 is the same as pfCM-MD. That is, pfCM-MD is a special case of pfCM-
chopMD. So, in the Appendix A.2, we focus on providing an indifferentiable security proof of
pfCM-chopMD with any s.

NMAC and HMAC [5]. Let K1 and K2 be n bits. K = K||0b−n. opad is formed by repeating
the byte ‘0x36’ as many times as needed to get a b-bit block, and ipad is defined similarly using
the byte ‘0x5c’. Then, NMAC and HMAC are defined as follows, where H is any hash function.

NMACH(K2||K1,M) = H(K2, H(K1,M))

HMACH
IV (K, M) = H(IV,K ⊕ opad||H(IV, K ⊕ ipad||M))).

In this document, we consider the case that H is pfCM0-MDf
pad(⋆, ⋆). And it is clear that for any

pad, there exists pad1 such that NMACpfCM1−MD
f
pad1 (K2||K1,M)= HMAC

pfCM0−MD
f
pad

IV (K, M),
where K2=f(IV,K ⊕ opad) and K1=f(IV, K ⊕ ipad). And we assume that in the case of
NMAC, the outer hash function uses the compression function one time, and in the case of
HMAC, the outer hash function uses the compression function two times.

Two PRF Constructions based on a pfCM-MD.

1. pfCMi −MD
f
pad(K, ⋆), where K

$← {0, 1}n.

2. pfCMi −MD
f
pad(IV,K||0b−n|| ⋆), where K

$← {0, 1}n.

It is clear that for any pad, K, and any M , there exists pad1 such that pfCM1 −MD
f
pad1

(K ′,M)

= pfCM0 −MD
f
pad(IV, K||0b−n||M), where K ′ = f(IV,K||0b−n).

Inequality. The following inequality will be used to prove Theorem 9.4.

Ineq 1. For any 0 ≤ ai ≤ 1,
∏q

i=1(1− ai) ≥ 1−
∑q

i=1 ai. One can prove it by induction on q.

Random Oracle Model : f is said to be a random oracle from X to Y if for each x ∈ X the
value of f(x) is chosen randomly from Y [8]. More precisely, Pr[f(x) = y | f(x1) = y1, f(x2) =
y2, . . . f(xq) = yq] = 1

T
, where x /∈ {x1, . . . , xq}, y, y1, · · · , yq ∈ Y and |Y | = T . In the case that

X = {0, 1}d for a fixed value d, we say f is a FIL (Fixed Input Length) random oracle. In
the case that X = {0, 1}∗, we say f is a VIL (Variable Input Length) random oracle. A VIL
random oracle is usually denoted by R.

The cost of Queries. The security bound of a scheme is usually described using the number q
of queries and the maximum length l of each queries. On the other hand, in [6], the notion cost
is used to describe the security bound of sponge construction. The notion cost denotes the total

October 29, 2008 page 64



ARIRANG Designed by CIST

block length of q queries. The notion cost is significant because the unit of time complexity
corresponds to the time of an underlying function call and the total time complexity depends
on how many the underlying function is called. The notion cost exactly reflects how many the
underlying function is called. So, we can consider two cases. The first case is that the number
of queries is bounded by q. The second case is that the cost of queries is bounded by q. Without
loss of generality, for describing notions and some results in this section, we assume that the
number of queries is bounded by q.

Computational Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of
probabilistic oracle algorithms. We define the computational distance of a probabilistic attacker
A distinguishing F from G as

AdvA(F,G) = |Pr[AF = 1]− Pr[AG = 1]|.

Statistical Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of prob-
abilistic oracle algorithms. We define the statistical distance of a deterministic attacker A
distinguishing F from G as

StatA(F, G) =
1

2

∑
v∈VA

|Pr[F = v]− Pr[G = v]|,

where Pr[O = v] denotes Pr[O(ci, xi) = yi, 1 ≤ i ≤ q, v = ((c1, x1, y1), · · · , (cq, xq, yq))], where
O(ci, xi) = Oci

(xi). And we let the maximum statistical distance of F and G against any
deterministic algorithm A be Stat(F, G), where the number of queries of A is bounded by q.

Computational Distance vs. Statistical Distance

Lemma 9.1. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of probabilistic
oracle algorithms. For any probabilistic algorithm A which can make at most q queries

AdvA(F,G) ≤ Stat(F, G).

Indifferentiability

We give a brief introduction of the indifferentiable security notion.

Definition 9.1. Indifferentiability. [26] A Turing machine H with oracle access to an ideal
primitive f is said to be (tD, tS, q, ε) indifferentiable from an ideal primitive R if there exists a
simulator S such that for any distinguisher D it holds that :

|Pr[DH,f = 1]− Pr[DR,S = 1] < ε

The simulator has oracle access to R and runs in time at most tS. The distinguisher runs in
time at most tD and makes at most q queries. Similarly, Hf is said to be (computationally)
indifferentiable from R if ε is a negligible function of the security parameter k (for polynomially
bounded by tD and tS).

The following Theorem [26] shows the relation between indifferentiable security notion and
the security of a cryptosystem.
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Theorem 9.2. [26] Let P be a cryptosystem with oracle access to an ideal primitive R. Let
H be an algorithm such that Hf is indifferentiable from R. Then cryptosystem P is at least
as secure in the f model with algorithm H as in the R model.

Above theorem says that if a domain extension (with a padding rule) based on a FIL ran-
dom oracle f is indifferentiable from a VIL random oracle R, then a cryptosystem, which is
proved in the VIL random oracle model, can use the domain extension (with a padding rule)
based on a FIL random oracle f instead of R with negligible loss of security.

Definition 9.2 [prf-advantage]. The prf-advantage of A on f : {0, 1}n × {0, 1}b → {0, 1}n is
defined by

Advprf
f(K,⋆)(A) = |Pr[K

$← {0, 1}n : Af(K,⋆) = 1]− Pr[g
$← Maps({0, 1}b, {0, 1}n) : Ag(⋆) = 1]|.

Advprf
f(⋆,K||0b−n)

(A) = |Pr[K
$←{0, 1}n:Af(⋆,K||0b−n)=1]−Pr[g

$←Maps({0, 1}n,{0, 1}n):Ag(⋆)=1]|,

For any function, its prf-advantage can be similarly defined.

Definition 9.3 [rka-prf-advantage [7]]. Let Φ1 be a set of functions mapping {0, 1}b to {0, 1}b
and let Φ2 be a set of functions mapping {0, 1}n to {0, 1}n. Let A be an adversary whose queries
have the form (X, ϕ) where X ∈ {0, 1}n and ϕ ∈ Φ1, or the form (ϕ,X) where X ∈ {0, 1}b and
ϕ ∈ Φ2. For i = 1 or 2, the rka-prf-advantage of A in a Φi-restricted related-key attack (RKA)
on f : {0, 1}n × {0, 1}b → {0, 1}n is defined by

Advrka-prf
f(⋆,RK(⋆,K||0b−n)),Φ1

(A) = |Pr[K
$← {0, 1}n : Af(⋆,RK(⋆,K||0b−n)) = 1]

− Pr[g
$← Maps({0, 1}n+b, {0, 1}n); K

$← {0, 1}n : Ag(⋆,RK(⋆,K||0b−n)) = 1]|,
Advrka-prf

f(RK(⋆,K),⋆),Φ2
(A) = |Pr[K

$← {0, 1}n : Af(RK(⋆,K),⋆) = 1]

− Pr[g
$← Maps({0, 1}n+b, {0, 1}n); K

$← {0, 1}n : Ag(RK(⋆,K),⋆) = 1]|,

where in the first case, on query (X,ϕ) of A, the oracle O(⋆,RK(⋆,K||0b−n)) returns the value of
O(X, ϕ(K||0b−n)) to A, and in the second case, on query (ϕ,X) of A, the oracle O(RK(⋆,K), ⋆)
returns the value of O(ϕ(K), X) to A.

Definition 9.4 [multi-rka-prf-advantage]. Let A be an adversary whose queries have the
form (i,X, ϕ) where X ∈ {0, 1}n and ϕ ∈ Φ1, or the form (i, ϕ, X) where 1 ≤ i ≤ q and
X ∈ {0, 1}b and ϕ ∈ Φ2. For i = 1 and 2, the multi-rka-prf-advantage of A in a Φi-restricted
related-key attack (RKA) on f : {0, 1}n × {0, 1}b → {0, 1}n is defined by

Advmulti-rka-prf
f(⋆,RK(⋆,K⋆||0b−n)),Φ1

(A) = |Pr[K1, · · · , Kq
$← {0, 1}n : Af(⋆,RK(⋆,K⋆||0b−n)) = 1]

−Pr[g1,· · · ,gq
$← Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:Ag⋆(⋆,RK(⋆,K||0b−n))=1]|,
Advmulti-rka-prf

f(RK(⋆,K⋆),⋆),Φ2
(A) = |Pr[K1, · · · , Kq

$← {0, 1}n : Af(RK(⋆,K⋆),⋆) = 1]

− Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:Ag⋆(RK(⋆,K),⋆)=1]|,
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where in the first case, on query (i,X, ϕ) of A, f(⋆,RK(⋆,K⋆||0b−n)) returns f(X,ϕ(Ki||0b−n))
to A, and g⋆(⋆,RK(⋆, K||0b−n)) returns gi(X,ϕ(K||0b−n)) to A. The second case is also simi-
larly defined.

Definition 9.5 [au-advantage [3]]. For any almost universal (au) adversary A, the au-advantage
of A on F (K, ⋆) is defined as follows, where F : {0, 1}n × {0, 1}∗ → {0, 1}n.

Advau
F (K,⋆)(A) = Pr[K

$← {0, 1}n; (M ̸= M ′)
$← A : F (K,M) = F (K, M ′)].

Definition 9.6 [eTCR-advantage [18]]. For any eTCR-adversary A, the eTCR-advantage of
A on a hash family H = {Hr(IV, ⋆)}r∈R is as follows,

AdveTCR
H (A) = Pr[(M, State)

$← A; r
$← R; (r′, M ′)

$← A(r,M, State)
: (r,M) ̸= (r′, M ′) and Hr(IV, M) = Hr′(IV, M ′)].

Definition 9.7 [eSPR†-advantage]. Given a hash family H = {Hr(IV, ⋆)}r∈R, for each r we
let Hr(IV, M)[i] be the input value of i-th compression function during the computation of
Hr(IV, M), that is, Hr(IV,M)[i] = (c,m), where c ∈ {0, 1}n, m ∈ {0, 1}b, M ∈ {0, 1}∗, and
Hr : {IV }×{0, 1}∗ → {0, 1}n is based on a compression function f : {0, 1}n×{0, 1}b → {0, 1}n.
Then, for any eSPR†-adversary A, the eSPR†7-advantage of A on a hash family H is defined
as follows,

AdveSPR†

H (A) = Pr[(M, State)
$← A; r

$←R; i
$← [1, l]; (c′,m′)

$← A(i, r,M, State)
: (c,m) = Hr(IV,M)[i] and (c,m) ̸= (c′,m′) and f(c,m) = f(c′,m′)],

where l = Lenf (Hr(IV, M)) is the number of computations of the compression function f when
computing Hr(IV, M) for any r, where M is generated by the adversary A.

A.2. Indifferentiable Security Analysis of a pfCM-chopMD Domain
Extension

In this Appendix A.2, we provide an indifferentiable security analysis of pfCM0-chopMD, which
is the domain extension of ARIRANG. In cases of ARIRANG-256 and ARIRANG-512, there is no
chopped bit (s = 0). In cases of ARIRANG-224 and ARIRANG-384, the chopped bits are 32 bits
(s = 32) and 128 bits (s = 128), respectively. For any i, the indifferentiable security analysis
of pfCMi-chopMD can be also similarly done.

Construction of the Simulator

Here, we define simulators as follows. the simulator SpfCM will be used in order to prove the
indifferentiable security of pfCM0-chopMD. For defining the simulator, we follow the style of
construction of the simulator in [13], where R : {0, 1}∗ → {0, 1}n−s is a VIL random oracle.

Definition of Simulator SpfCM

Initialization :
7eSPR† is similar to eSPR defined in [18].
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1. A partial function e : {0, 1}n+b → {0, 1}n initialized as empty,

2. a partial function e∗ = CM-MDe : ({0, 1}b)∗ → {0, 1}n initialized as e∗(null) = IV.

3. a set I = {IV} and a set U = {null}.

On query SR
pfCM(x,m) :

001 if (e(x,m) = x′)

return x′;

002 else if (∃ M ′ and M, e∗(M ′) = x⊕ P, ||M ′||b = i, pad(M) = M ′||m))

y = R(M);

choose w ∈R {0, 1}s;
define e(x,m) = z := y ∥ w;

return z;

003 else if (∃ M ′, e∗(M ′) = x⊕ i, ||M ′||b = i)

choose z ∈R {0, 1}n \ {c⊕ (i + 1) : c ∈ I} ∪ {c⊕ P : c ∈ I} ∪ {a : (ia, a) ∈ U}
∪ {a⊕ P ⊕ (i + 1) : (ia, a) ∈ U} ∪ {a⊕ ia⊕ (i + 1) : (ia, a) ∈ U}
∪ {a⊕ ia ⊕ P : (ia, a) ∈ U};

define e(x,m) = z;

define U = U ∪ {(i + 1, z)};
define e∗(M ′||m) = z;

return z;

004 else

z ∈R {0, 1}n;

define e(x,m) = z;

define I = I ∪ {x};
return z;

Some Important Observations on the Simulator SpfCM

The bound of the number of queries. In line 003, the number q of queries of S should
be bounded by q < 2n/6 in order to choose z. If q ≥ 2n/6, the simulator may not work. So, we
assume that q < 2n/6.

The bound of the number of possible input message. Firstly, in 002 and 003, there
exists at most one M ′ such that e∗(M ′) = x⊕ i or e∗(M ′) = x⊕ P by the process of selecting
z unrelated to the set U in line 003. This first observation corresponds to Lemma 1 in [6].
Secondly, in line 002 and 003, by the process of selecting z unrelated to the set I in line 003,
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the following holds : if e(x,m) is already defined under the assumption that e∗(M ′||m) is not
defined for all M ′ previously defined on e∗, where ||M ′||b = i− 1, then no M(= M ′||m) can be
newly defined such that e∗(M) = x⊕ i or e∗(M) = x⊕P , where where ||M ||b = i. This second
observation corresponds to the second part of proof of Lemma 2 in [6].

Indifferentiable Security Analysis of pfCM0-chopMD Hash Domain Extension

We will describe the indifferentiable security bound of each domain extension using the
notion cost of queries. We let the cost be q. For example, with the cost q of queries, A can
have access to O2 q times and no access to O1, where O1 corresponds to a hash function or a
VIL random oracle, and O2 corresponds to a compression function or a FIL random oracle. By
observations of simulators described above, the following Lemma holds.

Lemma 9.3. Let q < 2n/6. When the total cost of queries to O1 is t less than or equal to q,
the queries to O1 can be converted to t queries to O2, where O2 gives at least the same amount
of information to an attacker A and has no higher cost than O1.

Proof. The proof is the same as that of Lemma 3 in [6].

The Lemma 9.3 says that to give all queries to O2 and no query to O1 is the best strategy
to obtain better computational distance. That is, when the cost of queries is bound by q, for
any A there is an attacker B such that the following holds :

AdvA((Hf , f), (R, S)) ≤ AdvB(f, S),

where Hf=pfCM0 − chopMD
f
g , and S=SpfCM . Therefore, we focus on computing the upper

bound of the computational distance between f and S as shown in the following theorems.

Theorem 9.4. Let q < (2n − 1)/6 be the number of queries and 0 ≤ s < n. f : {0, 1}n+b →
{0, 1}n is a FIL random oracle. SpfCM is the simulator defined in the previous section. Then
for any (deterministic or probabilistic) algorithm A

AdvA(f, S) ≤ q(3q−1)
2n .

Proof. Let S be SpfCM . By Lemma 9.1, we only focus on computing an upper bound of
Stat(f, S). Note that Stat(f, S) is defined over all deterministic algorithms. So when the ora-
cle is f , the number of possible views is 2nq. And for any deterministic algorithm A, each view
occurs with probability 1/2nq. We let the set of 2nq possible views be VA. On the other hand,
when the oracle is S, the number of possible views is at least (2n − 2)(2n − 8) · · · (2n − 6q + 4).
We let the set of the smallest possible views be TS and the size of TS be rq. Assume that each
of TS views occurs with probability 1/rq. Therefore,

StatA(f, S) = 1
2

∑
v∈VA
|Pr[f = v]− Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v]− Pr[S = v]|+ 1
2

∑
v∈TS
|Pr[f = v]− Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0|+ 1

2

∑
v∈TS
| 1
2nq − 1

rq
|

= 1
2
· 2nq−rq

2nq + 1
2
· | rq

2nq − rq

rq
|

= 1
2
· (1− rq

2nq ) + 1
2
· (1− rq

2nq )
= 1− rq

2nq
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= 1−
∏q

i=1(1−
6i−4
2n )

≤
∑q

i=1(
6i−4
2n ) (by Ineq 1.)

= q(3q−1)
2n .

From Lemma 9.3 and Theorem 9.4, we can get indiffrerentiable security bound of pfCM0-
chopMD as the following corollary.

Corollary 9.5. Let q < (2n−1)/6 be the cost of queries and 0 ≤ s < n. f : {0, 1}n+b → {0, 1}n
is a FIL random oracle. SpfCM is the simulator defined in the previous section. Then for any
attacker A

AdvA((pfCM0 − chopMD
f
pad, f), (R, SpfCM)) ≤ q(3q−1)

2n .

A.3. PRF Security Analysis of HMAC based on a pfCM-MD Domain
Extension

In this section, with game-based proof technique, we provide a prf security analysis of HMAC
based on a pfCM0-MD domain extension. Our proof follows the proof technique for HMAC
in [3]. For any i, HMAC based on a pfCMi-MD domain extension can be also proved in the
similar way.

Lemma 9.6. For any rka-prf-adversary A with q queries, there exists an adversary BA such
that

|Pr[AG7 = 1]− Pr[AG6 = 1]| = Advrka-prf
f(⋆,RK(⋆,K||0b−n)),Φ1

(BA),

where G7 and G6 are games defined in Fig. 18, BA is defined in Fig. 19. BA can only
make two (IV, ϕipad) and (IV, ϕopad) queries. Φ1 = {ϕipad, ϕopad} where ϕipad(x) = x⊕ ipad and
ϕopad(x) = x⊕ opad.

Proof. Since Pr[AG7 = 1] = Pr[K
$← {0, 1}n : B

f(⋆,RK(⋆,K||0b−n))
A = 1] and Pr[AG6 = 1] =

Pr[g
$← Maps({0, 1}n+b, {0, 1}n); K

$← {0, 1}n : B
g(⋆,RK(⋆,K||0b−n))
A = 1], this lemma holds.

Lemma 9.7. For any prf-adversary A, the following equality holds :

Pr[AG6 = 1] = Pr[AG5 = 1],

where G6 and G5 are games defined in Fig. 18.

Proof. We already assumed that in the case of NMAC, the outer hash function uses the
compression function one time, and in the case of HMAC, the outer hash function uses the
compression function two times. So, this lemma is clear.

Lemma 9.8. For any prf-adversary A with q queries, there exists a prf-adversary CA such that

|Pr[AG5 = 1]− Pr[AG4 = 1]| = Advprf
f(K,⋆)(CA),

where G5 and G4 are games defined in Fig. 18, and CA is defined in Fig. 19. CA can make at
most q queries.
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Game G1 Game G2

100 On query M 100 K1
$← {0, 1}n; s← 0

101 Z
$← {0, 1}n 200 Z1, · · · , Zq

$← {0, 1}n
102 Return Z 300 On query M

301 s← s + 1; Ms ←M

302 Ys ← pfCM1-MDf
pad1

(K1,Ms)
303 If (∃ r < s : Yr = Ys) then
304 bad ← true;
305 Return Zs

Game G3 Game G4

100 K1
$← {0, 1}n; s← 0 100 K1

$← {0, 1}n

200 Z1, · · · , Zq
$← {0, 1}n 200 g

$← Maps({0, 1}b, {0, 1}n)
300 On query M 300 On query M

301 s← s + 1; Ms ←M 301 Return g(pad1(pfCM1 −MDf
pad1

(K1,Ms)))
302 Ys ← pfCM1-MDf

pad1
(K1,Ms)

303 If (∃ r < s : Yr = Ys) then
304 bad ← true; Zs ← Zr

305 Return Zs

Game G5

100 K2,K1
$← {0, 1}n

200 On query M

201 Return f((K2 ⊕ P ), pad1(pfCM1 −MDf
pad1

(K1,Ms)))

Game G6

100 K2,K1
$← {0, 1}n

200 On query M

201 Return NMACpfCM1−MD
f
pad1 (K2||K1, M)

Game G7

100 K
$← {0, 1}n

200 K ← K||0b−n

300 K1 ← f(IV,K ⊕ ipad)
400 K2 ← f(IV,K ⊕ opad)
500 On query M

501 Return NMACpfCM1−MD
f
pad1 (K2||K1, M)

Figure 18: Game G1 ∼ G7
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Adversary B
O(⋆,RK(⋆,K||0b−n))
A , where O is f(⋆, K||0b−n) or g(⋆,K||0b−n).

100 K1 ← O(IV, RK(ϕipad, K||0b−n))
200 K2 ← O(IV, RK(ϕopad, K||0b−n))
300 Run A as follows:
301 On query M of A, reply NMACpfCM1−MD

f
pad1

(⋆,⋆)(K2||K1,M) to A
302 Let T be the final output of A
400 Return T

Adversary CO
A , where O is f(K, ⋆) or g(⋆).

100 K1
$← {0, 1}n

200 Run A as follows:
201 On query M of A, reply O(pad1(pfCM1 −MD

f
pad1

(K1,M)))) to A
202 Let T be the final output of A
300 Return T

Adversary DA

100 s← 0 and Z1, · · · , Zq
$← {0, 1}n

200 Run A as follows:
201 On query M of A, s← s + 1 and Ms ←M and reply Zs to A

300 i, j
$← [1, q] with i ̸= j

400 Return Mi and Mj

Figure 19: Adversary BA, CA, DA
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Adversary E
O(RK(⋆,K),⋆)
A , where O is f(K, ⋆) or g(K, ⋆).

100 Run A, and obtain M , M ′ from A, and let m = ||pad1(M)||b, m′ = ||pad1(M ′)||b
200 Let pad1(M) = M1|| · · · ||Mm and pad1(M ′) = M ′

1|| · · · ||M ′
m′ and r = LCP (pad1(M), pad1(M ′))

/* r is the b-bit block length of the largest common prefix of pad1(M) and pad1(M ′) */
300 Randomly choose (l, l′) from I(pad1(M), pad1(M ′))

/* total number of cases is at most m + m′ − 1.
I(pad1(M), pad1(M ′)) is a sequence of (1, 1)|| · · · ||(r, r)||(r + 1, r + 1)
||(r + 2, r + 1)|| · · · ||(m, r + 1)||(m, r + 2)|| · · · ||(m,m′). */

400 If (l, l′) ∈ I1(pad1(M), pad1(M ′)) ∪ {(r + 1, r + 1)} ∪ I2(pad1(M), pad1(M ′))
/* I1(pad1(M), pad1(M ′)) = {(1, 1), · · · , (r, r)} and I2 = {(r + 2, r + 1), · · · , (m, r + 1)} */

401 then if l = m then al ← O(ϕP ,Ml) else al ← O(ϕl,Ml)

402 else al
$← {0, 1}n

500 If (l, l′) ∈ I1(pad1(M), pad1(M ′)) ∪ {(r + 1, r + 1)} ∪ I3(pad1(M), pad1(M ′))
/* I3 = {(m, r + 2), · · · , (m,m′)} */

501 then if l′ = m′ then a′l′ ← O(ϕP ,M ′
l′) else a′l′ ← O(ϕl′ ,M

′
l′)

502 else a′l′
$← {0, 1}n

600 For i = l + 1 to m do
601 if i < m then ai ← f(ai−1 ⊕ i, Mi)
602 if i = m then ai ← f(ai−1 ⊕ P,Mi)
700 For i = l′ + 1 to m′ do
701 if i < m′ then a′i ← f(a′i−1 ⊕ i,M ′

i)
702 if i = m′ then a′i ← f(a′i−1 ⊕ P, M ′

i)
800 If am = a′m′ then return 1 else return 0.

Figure 20: Adversary EA: P is the last counter value of pfCM1-MD.
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Proof. Since Pr[AG5 = 1] = Pr[K
$← {0, 1}n : C

f(K,⋆)
A = 1] and Pr[AG4 = 1] = Pr[g

$←
Maps({0, 1}b, {0, 1}n) : C

g(⋆)
A = 1], this lemma holds.

Lemma 9.9. For any prf-adversary A with q queries, the following equality holds :

Pr[AG4 = 1] = Pr[AG3 = 1],

where G4 and G3 are games defined in Fig. 18.

Proof. By the definitions of G3 and G4, it is clear.

Lemma 9.10. For any prf-adversary A with q queries, the following inequality holds :

|Pr[AG3 = 1]− Pr[AG2 = 1]| ≤ Pr[AG2 sets bad],

where G3 and G2 are games defined in Fig. 18.

Proof. As described in [9], this lemma follows from the Fundamental Lemma of Game Playing.

Lemma 9.11. For any prf-adversary A with q queries, the following equality holds :

Pr[AG2 = 1] = Pr[AG1 = 1],

where G2 and G1 are games defined in Fig. 18.

Proof. By the definitions of G1 and G2, it is clear.

Lemma 9.12. For any prf-adversary A with q queries, there exists an au-adversary DA such
that

Pr[AG2 sets bad] ≤ q(q − 1)

2
Advau

pfCM1−MDf
pad1

(K,⋆)
(DA),

where G2 is a game defined in Fig. 18, and DA is defined in Fig. 19.

Proof. We let F (K, ⋆) be pfCM1 −MD
f
pad1

(K, ⋆). Without loss of generality, we assume that
A makes q different queries.

Advau
F (K,⋆)(DA)

=
∑

i<j Pr[K
$←{0, 1}n;M1,· · · ,Mq

$← AD:F (K,Mi)=F (K,Mj)]Pr[Mi, Mj
$← DA]

=
∑

i<j Pr[K
$←{0, 1}n;M1,· · · ,Mq

$← AG2 :F (K, Mi)=F (K, Mj)]
2

q(q−1)

≥ Pr[K
$←{0, 1}n;M1,· · · ,Mq

$← AG2 :∃Mi,Mj s.t. F (K, Mi)=F (K, Mj)]
2

q(q−1)

= Pr[AG2 sets bad] 2
q(q−1)

.
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Lemma 9.13. For given M and M ′, where ||pad1(M)||b = m ≤ t and ||pad1(M
′)||b = m′ ≤ t′, if

(α′, β′) is the predecessor of (α, β) in the sequence of I(pad1(M), pad1(M
′)), then the following

holds.

Pr[K
$← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1|(l, l′) = (α, β)← E

f(RK(⋆,K),⋆)
A(M,M ′) ]

=Pr[g
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:E
g(RK(⋆,K),⋆)
A(M,M ′) =1|(l, l′)=(α′, β′)← E

g(RK(⋆,K),⋆)
A(M,M ′) ],

Here, E
O(RK(⋆,K),⋆)
A , I1, I2, I3 and I are defined in Fig. 20. In a sequence ((α1, β1), · · · , (αn, βn)),

(αi, βi) is called the predecessor of (αi+1, βi+1). For example, in the sequence I, the predecessor
of (r + 2, r + 1) is (r + 1, r + 1) and the predecessor of (m, r + 2) is (m, r + 1).

Proof. It follows from the definition of EA in Fig. 20.

Lemma 9.14. For any au-adversary A, the following holds.

Pr[K
$← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1|(l, l′) = (1, 1)← E

f(RK(⋆,K),⋆)
A(M,M ′) ]

= Pr[K
$← {0, 1}n : F (K,M) = F (K,M ′)],

Pr[g
$←Maps({0, 1}n+b,{0, 1}n); K

$←{0, 1}n : E
g(RK(⋆,K),⋆)
A(M,M ′) =1|(l, l′) = (m,m′)← E

g(RK(⋆,K),⋆)
A(M,M ′) ]

= 2−n,

where F (K, ⋆) denotes pfCM1 −MD
f
pad1

(K, ⋆).

Proof. It is clear by the construction of EA in Fig. 20.

Lemma 9.15. For any au-adversary A, there exists a rka-prf-adversary EA such that

Advau
pfCM1−MDf

pad1
(K,⋆)

(A) ≤ (t + t′ − 1)Advrka-prf
f(K,⋆),Φ2

(EA) + 2−n,

where EA is defined in Fig. 20.For any output (M, M ′) of A, ||pad1(M)||b ≤ t and ||pad1(M
′)||b ≤

t′. When t∗ = max(t, t′), Φ2 = {ϕ1, · · · , ϕt∗ , ϕP} where ϕi(x) = x ⊕ i. EA can only make at
most two (Mi, ϕ) and (M ′

j, ϕ
′) queries, where Mi and M ′

j are any value of b-bit, and ϕ, ϕ′ ∈ Φ2.

Proof. We let F (K, ⋆) be pfCM1 −MD
f
pad1

(K, ⋆).

Advrka-prf
f(RK(⋆,K),⋆),Φ2

(EA)

= |Pr[K
$← {0, 1}n : E

f(RK(⋆,K),⋆)
A = 1]

− Pr[g
$← Maps({0, 1}n+b, {0, 1}n); K

$← {0, 1}n : E
g(RK(⋆,K),⋆)
A = 1]|

= |
∑

M ̸=M ′ Pr[K
$← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1]Pr[(M, M ′)← A]

−
∑

M ̸=M ′ Pr[g
$←Maps({0, 1}n+b,{0, 1}n); K

$←{0, 1}n:E
g(RK(⋆,K),⋆)
A(M,M ′) =1]Pr[(M,M ′)←A]|

≥ |
∑

M ̸=M ′
Pr[K

$←{0,1}n:F (K,M)=F (K,M ′)]−2−n

t+t′−1
Pr[M,M ′ ← A]| by Lemma 9.13, 9.14

= | 1
t+t′−1

[(
∑

M ̸=M ′ Pr[K
$← {0, 1}n : F (K,M) = F (K,M ′)]Pr[M,M ′ ← A])− 2−n]|

= | 1
t+t′−1

(Advau
F (K,⋆)(A)− 2−n)|

≥ 1
t+t′−1

(Advau
F (K,⋆)(A)− 2−n).
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Theorem 9.16. For any prf-adversary A, there exist adversaries BA, CA, DA, EDA
such that

Advprf

HMAC
pfCM0−MD

f
pad

IV

(A) ≤ Advrka-prf
f(⋆,RK(⋆,K||0b−n)),Φ1

(BA) + Advprf
f(K,⋆)(CA)

+ q(q−1)(t+t′−1)
2

Advrka-prf
f(RK(⋆,K),⋆),Φ2

(EDA
) + q(q−1)

2n+1 ,

where BA, CA, DA, EDA
, Φ1, and Φ2 are defined as before.

Proof. By the definition of the prf-advantage, Advprf

HMAC
pfCM−MD

f
pad

IV

(A) = |Pr[AG7 = 1] −

Pr[AG1 = 1]|. So, we can get the above theorem with Lemma 9.6 ∼ Lemma 9.15.

A.4. Security Analysis of Two PRF Constructions based on a pfCM-
MD Domain Extension

In this section, we provide prf security analysis of pfCM0-MDf
pad(IV,K||0b−n|| ⋆) and pfCM1-

MDf
pad(K, ⋆), where K

$← {0, 1}n. Our analysis follows the analysis technique of Bellare et al.’

paper [4]. For any d and d′, pfCMd-MDf
pad(IV, K||0b−n|| ⋆) and pfCMd′-MDf

pad(K, ⋆) can be
also proved in the similar way.

Lemma 9.17. For any prf-adversary A with q queries, there exists a prf-adversary FA such
that

|Pr[AG′
3 = 1]− Pr[AG′

2 = 1]| = Advprf
f(⋆,K||0b−n)

(FA)

where G′3 and G′2 are games defined in Fig. 21, and FA is defined in Fig. 22. FA can only make
the query IV .

Proof. Since Pr[AG′
3 = 1] = Pr[K

$← {0, 1}n : F
f(⋆,K||0b−n)
A = 1] and Pr[AG′

2 = 1] = Pr[g
$←

Maps({0, 1}n, {0, 1}n) : F
g(⋆)
A = 1], the lemma holds.

Lemma 9.18. For any prf-adversary A, the following equality holds :

|Pr[AG′
2 = 1]− Pr[AG′

1 = 1]| = Advprf

pfCM1−MDf
pad1

(K,⋆)
(A)

where G′2 and G′1 are games defined in Fig. 21.

Proof. By the definition of the prf-advantage, the lemma holds.

Lemma 9.19. For any 2 ≤ j ≤ l, the following holds.

Pr[K1, · · · , Kq
$← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i←j = 1]

=Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:H
g⋆(RK(⋆,K),⋆)
A,i←j−1 =1],
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Game G′1 Game G′2

100 On query M 100 K ′
$← {0, 1}n

101 Z
$← {0, 1}n 200 On query M

102 Return Z 201 Return pfCM1-MDf
pad1

(K ′,M)

Game G′3

100 K
$← {0, 1}n

200 K ′ ← f(IV,K||0b−n)
300 On query M

301 Return pfCM1-MDf
pad1

(K ′,M)

Figure 21: Game G′1 ∼ G′3

where HA is defined in Fig. 22, and i ← j is described in line 10000 in Fig. 22. If A makes
q queries, then HA can make at most q queries. We assume that for each query M of A, the
b-bit block length of pad1(M) is at most l. Φ3 = {ϕ1, · · · , ϕl, ϕP} , where ϕi(X) = X ⊕ i and P
is the last counter of pfCM-MD. When we denote t-th query of HA by (it, ϕt, X t), we assume
that {ϕ1, · · · , ϕq} ⊂ {ϕP , ϕj} for some j. In other words, even though HA can make queries to
any one of {O1, O2, · · · , Oq}, HA can use at most two related-key-deriving (RKD) functions ϕ’s
from Φ3.

Proof. It follows from the definition of H
O1,··· ,Oq

A in Fig. 22.

Lemma 9.20. For any prf-adversary A with q queries, the following holds.

Pr[K1, · · · , Kq
$← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i←1 = 1] = Pr[K

$← {0, 1}n : AF (K,⋆) = 1],

Pr[K1,· · · ,Kq
$←{0, 1}n:H

f(RK(⋆,K⋆),⋆)
A,i←l = 1] =Pr[g

$←Maps({0, 1}∗,{0, 1}n):Ag(⋆)=1],

where F (K, ⋆) denotes pfCM1 −MD
f
pad1

(K, ⋆).

Proof. It is clear by the construction of HA in Fig. 22.

Theorem 9.21. For any prf-adversary A with q queries, there exists a multi-rka-prf-adversary
HA such that

Advprf

pfCM1−MDf
pad1

(K,⋆)
(A) = l ·Advmulti-rka-prf

f(RK(⋆,K⋆),⋆),Φ3
(HA),

where HA is defined as before.

Proof. We let F (K, ⋆) be pfCM1 −MD
f
pad1

(K, ⋆).

Advmulti-rka-prf
f(RK(⋆,K⋆),⋆),Φ3

(HA)

= |Pr[K1, · · · , Kq
$← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A = 1]
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Adversary F
O(⋆,K||0b−n)
A , where O is f(⋆,K||0b−n) or g(⋆).

100 K ′ ← O(IV )
200 Run A as follows:
201 On query M of A, reply pfCM1 −MDf

pad1
(K ′,M) to A

202 Let T be the final output of A
300 Return T

Adversary H
O1,··· ,Oq

A , where Oi is f(RK(⋆,Ki), ⋆) or gi(RK(⋆,K), ⋆).

10000 Randomly choose j from [1, l] and i← j and s← 0
20000 Run A as follows:
21000 On query t-th query M t of A, // 1 ≤ t ≤ q
21100 m← ||pad1(M t)||b and let pad1(M t) = M t

1|| · · · ||M t
m // ||pad1(M t)||b ≤ l

21200 if m ≤ i− 1 then pick at random an n-bit string at and return at to A
21300 else (namely m ≥ i),
21310 if (M t

1, · · · ,M t
i−1)̸=(M r

1 , · · · ,M r
i−1) for all r < t

21320 then s← s + 1 and let ct = s
21330 else if (M t

1,· · · ,M t
i−1)=(M r

1 ,· · · ,M r
i−1) & ||pad1(M r)||b ̸=i− 1 for a r s.t. r < t

21331 then let ct = cr

21332 else s← s + 1 and let ct = s
21340 if m > i then at = Oct(ϕi, M

t
i ) else at = Oct(ϕP ,M t

i )
21350 return pfCMi+1 −MDf (at, M t

i+1|| · · · ||M t
m) to A

30000 Let T be the final output of A
40000 Return T

Figure 22: Adversary FA and HA: P is the last counter value of pfCM-MD.
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− Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:H
g⋆(RK(⋆,K),⋆)
A =1]|

= |
∑l

j=1 Pr[K1, · · · , Kq
$← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i=j = 1] · 1

l

−
∑l

j=1 Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:H
g⋆(RK(⋆,K),⋆)
A,i=j =1] · 1

l
|

= 1
l
|Pr[K

$← {0, 1}n : AF (K,⋆) = 1]− Pr[g
$← Maps({0, 1}∗, {0, 1}n) : Ag(⋆) = 1]|

= 1
l
Advprf

F (K,⋆)(A).

The second equality follows from the definition of HA in Fig. 22 and the third equality
follows from Lemma 9.19 and Lemma 9.26.

Theorem 9.22. For any prf-adversary A with q queries, there exists a prf-adversary FA such
that

Advprf

pfCM0−MDf
pad(IV,K||⋆)

(A) ≤ Advprf

pfCM1−MDf
pad1

(K,⋆)
(A) + Advprf

f(⋆,K||0b−n)
(FA),

where FA can only make the query IV and is defined in Fig. 22.

Proof. By the definition of the prf-advantage, Advprf

pfCM0−MDf
pad(IV,K||⋆)

(A) = |Pr[AG′
3 = 1] −

Pr[AG′
1 = 1]|. So, we can get above theorem with Lemma 9.17 ∼ Lemma 9.18.

Corollary 9.23. For any prf-adversary A with q queries, there exist adversaries FA and HA

such that

Advprf

pfCM0−MDf
pad(IV,K||⋆)

(A) ≤ l ·Advmulti-rka-prf
f(RK(⋆,K⋆),⋆),Φ3

(HA) + Advprf
f(⋆,K||0b−n)

(FA),

where FA, HA and Φ3 are defined as before.

Proof. This holds by Theorem 9.21 and 9.22.

A.5. PRF Security Analysis of NIST SP 800-56A Key Derivation
Function based on a pfCM-MD Domain Extension

In this section, we provide prf security analysis of pfCM0-MDf
pad(IV, ⋆32 ||K|| ⋆), where ⋆32 is

any 32-bit string, and K
$← {0, 1}n. pfCM0-MDf

pad(IV, ⋆32 ||K|| ⋆) corresponds to NIST SP
800-56A key derivation function based on ARIRANG. Our analysis follows the analysis technique
of Bellare et al.’ paper [4]. For any i, the prf security of pfCMi-MDf

pad(IV, ⋆32 ||K|| ⋆) can be
also proved in the similar way.

Lemma 9.24. For any prf-adversary A with q queries, there exists a prf-adversary QA such
that

|Pr[AG′′
3 = 1]− Pr[AG′′

2 = 1]| = Advprf
f(⋆,⋆32||K||⋆b−n−32)

(QA)

where G′′3 and G′′2 are games defined in Fig. 23, and QA is defined in Fig. 24. And QA can
make q queries of the form (IV || ⋆32 ||⋆b−n−32), and ⋆i means any i-bit string.

October 29, 2008 page 79



ARIRANG Designed by CIST

Proof. Since Pr[AG′′
3 = 1] = Pr[K

$← {0, 1}n : Q
f(⋆n,⋆32||K||⋆b−n−32)
A = 1] and Pr[AG′

2 = 1] =

Pr[g
$← Maps({0, 1}n, {0, 1}n) : Q

g(⋆n||⋆32||⋆b−n−32)
A = 1], the lemma holds.

Lemma 9.25. For any prf-adversary A, the following equality holds :

|Pr[AG′′
2 = 1]− Pr[AG′′

1 = 1]| = Advprf

pfCM1−MDf
pad1

(g(IV,⋆32||K||⋆b−n−32), ⋆)
(A)

where G′′2 and G′′1 are games defined in Fig. 23, and g
$← Maps({0, 1}b, {0, 1}n).

Proof. By the definition of the prf-advantage, the lemma holds.

Lemma 9.26. For any 2 ≤ j ≤ l − 1, the following holds.

Pr[K1, · · · , Kq
$← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=j = 1]

=Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:V
g⋆(RK(⋆,K),⋆)
A,i=j−1 =1],

where VA is defined in Fig. 24.

Proof. It is clear by the definition of VA.

Game G′′1

100 On query M

101 Z
$← {0, 1}n

102 Return Z

Game G′′2

100 g
$← Maps({0, 1}b, {0, 1}n)

300 On query M = M1||M2 // |M1| = 32 and |M2| = t where t is any value.
200 K ′ ← g(IV, M1||M2[1, b− n− 32]) // M2[1, x] denotes the first x-bit of M2

301 Return pfCM1-MDf
pad1

(K ′,M [b− n− 31, t])

Game G′′3

100 K
$← {0, 1}n

300 On query M = M1||M2 // |M1| = 32 and |M2| = t where t is any value.
200 K ′ ← f(IV,M1||K||M2[1, b− n− 32]) // M2[1, x] denotes the first x-bit of M2

301 Return pfCM1-MDf
pad1

(K ′,M [b− n− 31, t])

Figure 23: Game G′′1 ∼ G′′3

Lemma 9.27. For any prf-adversary A of q queries, the following holds.
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Adversary Q
O(⋆n,⋆32||⋆b−n−32)

A , where O is f(⋆n, ⋆32||K||⋆b−n−32) or g(⋆n|| ⋆32 ||⋆b−n−32).

100 Run A as follows:
200 On query M of A, K′ ← O(IV, M [1, b− n]) // |M | = t

201 Reply pfCM1 −MD
f
pad1

(K′, M [b− n, t]) to A

202 Let T be the final output of A
300 Return T

Adversary V
O1,··· ,Oq

A , where Oi is f(RK(⋆, Ki)||⋆) or gi(RK(⋆, K)||⋆).

100000 Randomly choose j from [1, l − 1] and i← j and s← 0
200000 Run A as follows:
210000 On query t-th query Mt of A, // 1 ≤ t ≤ q
211000 Let pad(Mt) = Mt

1|| · · · ||Mt
mt

where |M t
1| = b− n, |Mt

j | = b for 2 ≤ j ≤ mt // mt ≤ l

212000 if mt ≤ i− 1 then at $← {0, 1}n and return at to A
213000 else (namely mt ≥ i),
213100 if (Mt

1, · · · , M t
i )̸=(Mr

1 , · · · , Mr
i ) for all r < t

213200 then s← s + 1 and let ct = s and at $← {0, 1}n
213300 else if (M t

1,· · · ,Mt
i )=(Mr

1 ,· · · ,Mr
i ) & ((mt = i & mr = i) or (mt ̸= i & mr ̸= i)) for some r with r < t

213310 then let ct ← cr and at ← ar

213320 else if (Mt
1,· · · ,Mt

i )=(Mr
1 ,· · · ,Mr

i ) & (mt = i or mr = i) for some r with r < t

213321 then s← s + 1 and let ct = s and at $← {0, 1}n
213400 if mt > i + 1 then at ← Oct (ϕi, M

t
i+1)

213500 if mt = i + 1 then at ← Oct (ϕP , M t
i+1)

213600 return pfCMi+1 −MD
f
(at, M t

i+2|| · · · ||Mt
mt

) to A // pfCMi+1 −MD
f
(at, null) = at

300000 Let T be the final output of A
400000 Return T

Figure 24: Adversary QA and VA: P is the last counter value of pfCM-MD.

Pr[K1, · · · , Kq
$← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=1 = 1] = Pr[K

$← {0, 1}n : AF (K,⋆) = 1],

Pr[K1,· · · ,Kq
$←{0, 1}n:V

f(RK(⋆,K⋆),⋆)
A,i=l−1 = 1] =Pr[g

$←Maps({0, 1}∗,{0, 1}n):Ag(⋆)=1],

where F (K, ⋆) denotes pfCM1 −MD
f
pad1

(g(IV, ⋆32||K||⋆b−n−32), ⋆).

Proof. It is clear by the construction of VA in Fig. 24.

Theorem 9.28. For any prf-adversary A with q queries, there exist adversaries VA such that

Advprf

pfCM1−MDf
pad1

(g(IV,⋆32||K||⋆b−n−32), ⋆)
(A) = (l − 1) ·Advmulti-rka-prf

f(RK(⋆,K⋆),⋆),Φ4
(VA),

where VA is defined in Fig. 24 and VA can make at most q queries. g
$← Maps({0, 1}b, {0, 1}n).

We assume that for each query M of A, the b-bit block length of pad1(M) is at most l. Φ4 =
{ϕ1, · · · , ϕl, ϕP} , where ϕi(X) = X ⊕ i and P is the last counter of pfCM-MD. We assume
that {ϕ1, · · · , ϕq} ⊂ {ϕP , ϕj} for some j, where (it, ϕt, X t) is t-th query of VA. In other words,
even though VA can make queries to any one of {O1, O2, · · · , Oq}, VA can use at most two
related-key-deriving (RKD) functions ϕ’s from Φ4.

Proof. We let F (K, ⋆) be pfCM1 −MD
f
pad1

(g(IV, ⋆32||K||⋆b−n−32), ⋆).

Advmulti-rka-prf
f(RK(⋆,K⋆),⋆),Φ4

(VA)

= |Pr[K1, · · · , Kq
$← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A = 1]
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− Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:V
g⋆(RK(⋆,K),⋆)
A =1]|

= |
∑l−1

j=1 Pr[K1, · · · , Kq
$← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=j = 1] · 1

l−1

−
∑l−1

j=1 Pr[g1,· · · ,gq
$←Maps({0, 1}n+b,{0, 1}n);K

$←{0, 1}n:V
g⋆(RK(⋆,K),⋆)
A,i=j =1] · 1

l−1
|

= 1
l−1
|Pr[K

$← {0, 1}n : V F (K,⋆) = 1]− Pr[g
$← Maps({0, 1}∗, {0, 1}n) : V g(⋆) = 1]|

= 1
l−1

Advprf
F (K,⋆)(A).

The second equality follows from the definition of VA in Fig. 24 and the third equality
follows from Lemma 9.26 and Lemma 9.27.

Theorem 9.29. For any prf-adversary A with q queries, there exist a prf-adversary QA such
that

Advprf

pfCM0−MDf
pad(IV, ⋆32||K|| ⋆)

(A) ≤ Advprf

pfCM1−MDf
pad1

(g(IV,⋆32||K||⋆b−n−32), ⋆)
(A)

+ Advprf
f(⋆,⋆32||K||⋆b−n−32)

(QA),

where QA can make q queries of the form (IV ||⋆32 ||⋆b−n−32) and is defined in Fig. 24, ⋆i means

any i-bit string, and g
$← Maps({0, 1}b, {0, 1}n).

Proof. By the definition of the prf-advantage, Advprf

pfCM0−MDf
pad(IV, ⋆32||K|| ⋆)

(A) = |Pr[AG′′
3 =

1]− Pr[AG′′
1 = 1]|. So, we can get above theorem with Lemma 9.24 ∼ Lemma 9.25.

Corollary 9.30. For any adversary A with q queries, there exist adversaries QA and VA such
that

Advprf

pfCM0−MDf
pad(IV, ⋆32||K|| ⋆)

(A) ≤ (l−1)·Advmulti-rka-prf
f(RK(⋆,K⋆),⋆),Φ4

(VA)+Advprf
f(⋆,⋆32||K||⋆b−n−32)

(QA),

QA, VA and Φ4 are defined as before.

Proof. This holds by Theorem 9.28 and 9.29.

A.6. eTCR Security Analysis of a pfCM-MD Domain Extension with
the Message Randomization Function in NIST SP 800-16

Here, we provide eTCR security analysis of pfCM0-MD with the message randomization (in
short, mr) in NIST SP 800-16, where pfCM0-MD is the domain extension of ARIRANG. More

precisely, we define a hash family H = {pfCM0 −MD
f
pad(IV, mr(r,M))}r∈∪80≤i≤1024{0,1}i , where

mr is the message randomization function in NIST SP 800-16, and M ∈ {0, 1}∗. And for ARI-
RANG, we let pad(M) = M ||10t||bind(|M |), where bind(|M |) is the d-bit representation of the
bit-length of M and t is the smallest non-negative integer such that pad(M) is a multiple of
b-bit block. In cases of ARIRANG-224 and ARIRANG-256, d = 64, and in cases of ARIRANG-384
and ARIRANG-512, d = 128.
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Message Randomization (mr) in NIST SP 800-16

mr(r,M) = M ′ :

1 If (|M | ≥ |r| − 1) then padding = 1 else padding = 1||0|r|−|M |−1

2 m = M ||padding

3 Let n = |r|

4 If (n > 1024) then stop and output an error indicator

5 counter = ⌊|m|/n⌋

6 remainder = (|m| mod n)

7 Concatenate counter copies of the r to the remainder left-most bits of the r to get R
such that |R| = |m|

R = r||r|| · · · ||r||r[0 . . . (remainder − 1)]

8 r length indicator = r length indicator generation(n)

9 M ′ = r||(m⊕R)||r length indicator

10 Return M ′;

r length indicator generation(n) : // 80≤ n ≤1024 and the output is 16-bit.

1 A = n and B = A mod 2

2 If B = 0 then b15 = 0 else b15 = 1

3 For i = 14 to 0

3.1 A = ⌊A/2⌋ and B = A mod 2

3.2 If B = 0 then bi = 0 else bi = 1

4 r length indicator = b0||b1|| · · · ||b15

5 Return r length indicator;

eTCR Security Analysis of pfCM0-MD with mr in NIST SP 800-16

Lemma 9.31. For any (r,M) ̸= (r′,M ′), mr(r,M) ̸= mr(r′,M ′),

where mr is the message randomization in NIST SP 800-16.
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Proof. If mr(r,M) = mr(r′,M ′), then by the definition of mr the following equality hold.

r||(m⊕R)||r length indicator = r′||(m′ ⊕R′)||r′ length indicator. (1)

Since |r length indicator| = |r′ length indicator| = 16 by the definition of mr, r length indicator
should be equal to r′ length indicator, which means that |r| = |r′|. And since r and r′ are
located in the first some bits in the equality (1), we know that r = r′, which means also that
m = m′ and R = R′, where R and R′ are generated from the identical r (=r′). Finally, by the
padding method defined in line 1 and 2 of mr, m = m′ means that M = M ′. Therefore, the
lemma holds.

In the following theorem, it is shown that the eTCR-advantage of A on the pfCM0-MD with
mr is bounded by the eSPR†-advantage of A on the pfCM0-MD with mr.

Theorem 9.32. For any eTCR-adversary A, there exists a SPR†-adversary BA such that

AdveTCR
H (A) ≤ l ·AdveSPR†

H (BA),

where H = {pfCM0 −MD
f
pad(IV, mr(r, ⋆))}r∈∪80≤i≤1024{0,1}i , and mr is the message randomiza-

tion function in NIST SP 800-16. BA is defined in Fig. 25. l is defined in Fig. 25.

Proof. Let Hr(IV, ⋆) be pfCM0 −MD
f
pad(IV, mr(r, ⋆)). ∆ is the statement that “(M, State)

$←
A; r

$← R; (r′,M ′)
$← A(r,M, State) : (r,M) ̸= (r′,M ′) and Hr(IV,M) = Hr′(IV, M ′)”.

Υ is the statement that “(M, State)
$← BA; r

$← ∪80≤j≤1024{0, 1}j; i
$← [1, l]; (c′,m′)

$←
BA(i, r,M, State) : (c,m) = Hr(IV,M)[i] and (c,m) ̸= (c′,m′) and f(c,m) = f(c′,m′)”.

AdveTCR
H (A) = Pr[∆] = Pr[∆∧(|mr(r,M)| = |mr(r′,M ′)|)]+Pr[∆∧(|mr(r,M)| ̸= |mr(r′,M ′)|)]

≤ l · Pr[Υ ∧ (|mr(r,M)| = |mr(r′,M ′)|)] + l · Pr[Υ ∧ (|mr(r,M)| ̸= |mr(r′,M ′)|)]
= l · Pr[Υ] = l ·AdveSPR†

H (BA).

The equality of the second line is guaranteed by Claim 1 and Claim 2.

Claim 1. Pr[∆ ∧ (|mr(r,M)| = |mr(r′,M ′)|)] ≤ l · Pr[Υ ∧ (|mr(r,M)| = |mr(r′,M ′)|)].

Proof. Since pfCM0 −MD
f
pad(IV, ⋆) preserves the collision-resistance of f and |mr(r,M)| =

|mr(r′,M ′)|, if (mr(r,M), mr(r′,M ′)) is a collision pair of pfCM0 −MD
f
pad(IV, ⋆), there exists

a i such that f(c, x) = f(c′, x′), where (c, x) = pfCM0 −MD
f
pad(IV, mr(r,M))[i], (c′, x′) =

pfCM0 −MD
f
pad(IV, mr(r′,M ′))[i], and (c, x) ̸= (c′, x′). In the definition of BA in Fig. 25, the

probability that i is correctly guessed is 1/l. So, the Claim 1 holds.

Claim 2. Pr[∆ ∧ (|mr(r,M)| ̸= |mr(r′,M ′)|)] = l · Pr[Υ ∧ (|mr(r,M)| ̸= |mr(r′,M ′)|)].

Proof. Since pad(M) = M ||10t||bind(|M |), if |mr(r,M)| ̸= |mr(r′,M ′)|, and (mr(r,M), mr(r′, M ′))

is a collision pair of pfCM0 −MD
f
pad(IV, ⋆), then f(c, x) = f(c′, x′), where (c, x) = pfCM0 −MD

f
pad

(IV, mr(r,M))[l], (c′, x′) = pfCM0 −MD
f
pad (IV, mr(r′,M ′))[l′], and (c, x) ̸= (c′, x′). In the def-

inition of BA in Fig. 25, the probability that i = l is 1/l. So, the Claim 2 holds.
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Adversary BA.

000 Run A and obtain M from A and Choose M as a target message.

100 Given r
$← ∪80≤i≤1024{0, 1}i

200 Given i
$← [1, l] // l = Lenf (pfCM0 −MD

f
pad(IV, mr(r, M)))

300 Forward r to A.

400 Obtain (r′, M ′) from A and let l′ = Lenf (pfCM0 −MD
f
pad(IV, mr(r′, M ′))).

500 if |mr(r, M)|=|mr(r′, M ′)| then (c′, m′)← pfCM0 −MD
f
pad(IV, mr(r′, M ′))[i]

600 if |mr(r, M)| ̸= |mr(r′, M ′)| then (c′, m′)← pfCM0 −MD
f
pad(IV, mr(r′, M ′))[l′]

700 Return (c′, m′)

Figure 25: Adversary BA: l′ = Lenf (pfCM0 −MD
f
pad(IV, mr(r′,M ′))) is the number of com-

putations of the compression function f when computing pfCM0 −MD
f
pad(IV, mr(r′,M ′)) for

any r, where M is generated by the adversary A. mr is the message randomization function in
NIST SP 800-16.

Appendix B

In this section, we demonstrate local collision patterns and each conditions with maximum prob-
ability. Figure 26 is shape of local collision patterns and table 16 is condition and probability
for each local collision pattern. In figure 26 and table 16, each variable of form X−Y −Z−W
is as follows:

• X means the number of step to construct local collision.

• Y means the shape of the local collision pattern.

• Z means position of perturbation message difference of the step to be started the local
collision.

• W means the step to be started the local collision.

Specially the conditions of each local collision pattern means conditions that expanded
message words which are made from original input message words should be satisfy. The
local collision patterns of table 16 are pattern with maximize probability which we have done
exhaustive search through simulation. In table 16, we considered two probability which one
is probability to satisfy local collision in first round and the other is probability to satisfy
local collision in the other rounds. In case first round, attacker can control message value
and message difference to construct local collision, but he can not control message value and
message difference because these values are already fixed in first round.
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Table 16: Local collision patterns condition of ARIRANG.

pattern condition (t = 0, 20, 40, 60)
probability

t = 0 t ̸= 0

5−A−L−2
∆Wσ(2+t) = ∆Wσ(11+t) 0 0
∆Wσ(5+t) ⊕∆Wσ(7+t) ⊕∆Wσ(9+t) = ∆Wσ(10+t) = 0x00000000

5−A−L−5
(∆Wσ(8+t) ≪ 31) = ∆Wσ(11+t) 0 0
∆Wσ(13+t) ⊕∆Wσ(15+t) ⊕∆Wσ(17+t) = ∆Wσ(0+t) = 0x00000000

5−A−R−2
∆Wσ(3+t) = ∆Wσ(10+t) 0 0
∆Wσ(4+t) ⊕∆Wσ(6+t) ⊕∆Wσ(8+t) = ∆Wσ(11+t) = 0x00000000

5−A−R−5
(∆Wσ(9+t) ≪ 19) = ∆Wσ(10+t) 0 0
∆Wσ(12+t) ⊕∆Wσ(14+t) ⊕∆Wσ(16+t) = ∆Wσ(1+t) = 0x00000000

6−A−L−3
(∆Wσ(4+t) ⊕∆Wσ(6+t) ≪ 31) = ∆Wσ(11+t)

2−64 2−224∆Wσ(7+t) ⊕∆Wσ(9+t) = ∆Wσ(10+t) = 0x00000000

∆Wσ(13+t) ⊕∆Wσ(15+t) = ∆Wσ(0+t) = 0x00000000

6−A−R−3
(∆Wσ(5+t) ⊕∆Wσ(7+t) ≪ 19) = ∆Wσ(10+t)

2−64 2−224∆Wσ(6+t) ⊕∆Wσ(8+t) = ∆Wσ(11+t) = 0x00000000

∆Wσ(12+t) ⊕∆Wσ(14+t) = ∆Wσ(1+t) = 0x00000000

7−A−L−1
(∆Wσ(13+t) ≪ 5) = ∆Wσ(0+t)

2−64 2−224(∆Wσ(4+t) ≪ 31) = ∆Wσ(11+t)

∆Wσ(3+t) ⊕∆Wσ(5+t) ⊕∆Wσ(7+t) ⊕∆Wσ(9+t) = ∆Wσ(10+t) = 0x00000000

7−A−L−4
(∆Wσ(9+t) ≪ 19) = ∆Wσ(10+t)

2−64 2−224(∆Wσ(6+t) ≪ 31) = ∆Wσ(11+t)

∆Wσ(13+t) ⊕∆Wσ(15+t) ⊕∆Wσ(17+t) ⊕∆Wσ(19+t) = ∆Wσ(0+t) = 0x00000000

7−A−R−1
(∆Wσ(12+t) ≪ 11) = ∆Wσ(1+t)

2−64 2−224(∆Wσ(5+t) ≪ 19) = ∆Wσ(10+t)

∆Wσ(2+t) ⊕∆Wσ(4+t) ⊕∆Wσ(6+t) ⊕∆Wσ(8+t) = ∆Wσ(11+t) = 0x00000000

7−A−R−4
(∆Wσ(7+t) ≪ 19) = ∆Wσ(10+t)

2−64 2−224(∆Wσ(8+t) ≪ 31) = ∆Wσ(11+t)

∆Wσ(12+t) ⊕∆Wσ(14+t) ⊕∆Wσ(16+t) ⊕∆Wσ(18+t) = ∆Wσ(1+t) = 0x00000000

7−B−L−1
∆Wσ(13+t) ≪ 5) = ∆Wσ(0+t)

2−32 2−224(∆Wσ(2+t) ⊕∆Wσ(4+t) ≪ 31) = ∆Wσ(11+t)

∆Wσ(3+t) ⊕∆Wσ(5+t) ⊕∆Wσ(7+t) ⊕∆Wσ(9+t) = ∆Wσ(10+t) = 0x00000000

7−B−L−4
∆Wσ(9+t) ≪ 19) = ∆Wσ(10+t)

2−64 2−224(∆Wσ(6+t) ⊕∆Wσ(8+t) ≪ 31) = ∆Wσ(11+t)

∆Wσ(13+t) ⊕∆Wσ(15+t) ⊕∆Wσ(17+t) ⊕∆Wσ(19+t) = ∆Wσ(0+t) = 0x00000000

7−B−R−1
∆Wσ(12+t) ≪ 11) = ∆Wσ(1+t)

2−32 2−224(∆Wσ(3+t) ⊕∆Wσ(5+t) ≪ 19) = ∆Wσ(10+t)

∆Wσ(2+t) ⊕∆Wσ(4+t) ⊕∆Wσ(6+t) ⊕∆Wσ(8+t) = ∆Wσ(11+t) = 0x00000000

7−B−R−4
∆Wσ(8+t) ≪ 31) = ∆Wσ(11+t)

2−64 2−224(∆Wσ(7+t) ⊕∆Wσ(9+t) ≪ 19) = ∆Wσ(10+t)

∆Wσ(12+t) ⊕∆Wσ(14+t) ⊕∆Wσ(16+t) ⊕∆Wσ(18+t) = ∆Wσ(1+t) = 0x00000000
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5-A-L 5-A-R 6-A-L 6-A-R 7-B-L 7-B-R7-A-L 7-A-R

Perturbation message difference Correction message difference

Nonzero message difference

Figure 26: Local collision patterns of ARIRANG.

Appendix C

In this section, we represent our simulation results of ARIRANG in various versions. Table 17
and Table 18 are the results on a 32-bit processor. Table 19 and Table 20 are the results on a
64-bit processor.
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Table 17: Execution times of various message sizes for ARIRANG using one S-box on a 32-bit
processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224

8 3220.7 402.6 16 3201.7 200.1
32 3261.2 101.9 64 6284.5 98.2
128 9348.4 73 256 16938.4 66.2
512 38798.8 75.8 1024 93569.5 91.4
1M 97645350 93.1 10M 976421875 93.1

ARIRANG-256

8 3203 400.4 16 3222 201.4
32 3240.9 101.3 64 6285.8 98.2
128 9368.6 73.2 256 16938.4 66.2
512 39947.4 78 1024 93926.3 91.7
1M 97544150 93 10M 976124600 93.1

ARIRANG-384

8 31268.3 3908.5 16 31111.4 1944.5
32 30992.5 968.5 64 31625 494.1
128 63981.2 499.9 256 99836.3 390
512 178523.1 348.7 1024 332359.8 324.6
1M 306174275 292 10M 3061198800 291.9

ARIRANG-512

8 31230.3 3903.8 16 31210.1 1950.6
32 30992.5 968.5 64 31170.9 487
128 64356.9 502.8 256 100409.4 392.2
512 178285.3 348.2 1024 332280.1 324.5
1M 306167950 292 10M 3061198800 291.9
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Table 18: Execution times of various message sizes for ARIRANG using seven S-box on a 32-bit
processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224

8 3024.1 378 16 3008.2 188
32 3047.6 95.2 64 5902 92.2
128 8763.9 68.5 256 14598.9 57
512 25956 50.7 1024 48780.9 47.6
1M 46797157 44.6 10M 468844420 44.7

ARIRANG-256

8 3027.9 378.5 16 3020.3 188.8
32 3043.8 95.1 64 5897.9 92.2
128 8783.9 68.6 256 14519.7 56.7
512 25912.8 50.6 1024 48743 47.6
1M 46785266 44.6 10M 468682500 44.7

ARIRANG-384

8 23616 2952 16 23604.1 1475.3
32 23600.3 737.5 64 23584.4 368.5
128 46710.1 364.9 256 69843.7 272.8
512 115992.7 226.5 1024 208289.8 203.4
1M 189152920 180.4 10M 1890147820 180.3

ARIRANG-512

8 23623.6 2953 16 23651.5 1478.2
32 23623.9 738.2 64 23587.9 368.6
128 46717.7 365 256 69820.2 272.7
512 115988.6 226.5 1024 208408.8 203.5
1M 189181003 180.4 10M 1890385640 180.3
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Table 19: Execution times of various message sizes for ARIRANG using one S-box on a 64-bit
processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224

8 3142.3 392.8 16 3103 193.9
32 3240.9 101.3 64 6048 94.5
128 8933.4 69.8 256 16582.9 64.8
512 39886.7 77.9 1024 95072.3 92.8
1M 100409375 95.8 10M 999546075 95.3

ARIRANG-256

8 3142.3 392.8 16 3103 193.9
32 3142.3 98.2 64 6068.2 94.8
128 8954.9 70 256 16346.3 63.9
512 39373.1 76.9 1024 93768.1 91.6
1M 99814825 95.2 10M 998856650 95.3

ARIRANG-384

8 38582.5 4822.8 16 38443.4 2402.7
32 39017.7 1219.3 64 38502.8 601.6
128 79477.4 620.9 256 121440 474.4
512 213883.7 417.7 1024 396478.8 387.2
1M 361214425 344.5 10M 3610291025 344.3

ARIRANG-512

8 38206.8 4775.8 16 38306.7 2394.2
32 38385.2 1199.5 64 38463.6 601
128 79280.1 619.4 256 122132 477.1
512 213883.7 417.7 1024 397011.4 387.7
1M 361012025 344.3 10M 3610986775 344.4
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Table 20: Execution times of various message sizes for ARIRANG using seven S-boxes on a
64-bit processor

Algorithm Message Cycles/Msg Cycles/Byte Message Cycles/Msg Cycles/Byte
(Byte) (Byte)

ARIRANG-224

8 2438.9 304.9 16 2383.5 149
32 2423.2 75.7 64 4593.5 71.8
128 6759.7 52.8 256 11149.7 43.6
512 19903.8 38.9 1024 37552.8 36.7
1M 35787609 34.1 10M 359022180 34.2

ARIRANG-256

8 2391.6 299 16 2395.7 149.7
32 2419.2 75.6 64 4581.6 71.6
128 6783.7 53 256 11147.7 43.5
512 19864.5 38.8 1024 37358 36.5
1M 35755731 34.1 10M 358546540 34.2

ARIRANG-384

8 26675.8 3334.5 16 26663.9 1666.5
32 26430.7 826 64 26683.7 416.9
128 52778.1 412.3 256 78860.9 308.1
512 131085.6 256 1024 235446.9 229.9
1M 213792843 203.9 10M 2138363590 203.9

ARIRANG-512

8 26648.2 3331 16 26651.8 1665.7
32 26683.4 833.9 64 26675.6 416.8
128 52766.2 412.2 256 78856.8 308
512 131069.9 256 1024 235451.9 229.9
1M 213824468 203.9 10M 2138285160 203.9
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