
Observations and Attacks On The SHA-3

Candidate Blender

Craig Newbold
cjnewbold@googlemail.com

Abstract

51 candidates have been accepted as first round candidates in NIST‘s
SHA-3 competition, to decide the new cryptographic hash standard. Many
of these submissions have no external cryptanalysis published, so the task
begins to analyse their security and eliminate those that have vulnerabili-
ties. In what we believe to be the first published external cryptananalysis
of one candidate, Blender, we make observations on its structure, then
exploit these features to give a multicollision attack of time complex-

ity around 2
n+w

2 , and a first preimage attack of time complexity around

n2
n+w

2 . Both attacks have minimal space requirements, so we believe that
this constitutes a break of Blender. We then leave possible improvements
on these attacks as open problems.

1 Introduction

With SHA-1 broken [2, 3] and SHA-2 under suspicion, NIST announced a com-
petition, similar to the AES process, to find a new hash standard. Of 64 sub-
missions, 51, including Blender [1], met the acceptance criteria. Many of these
submissions have no external cryptanalysis published, so the task begins to
analyse their security and eliminate those that have vulnerabilities.

In section 2, we give a brief overview of Blender. In section 3, we present
what we believe to to be the first published external analysis of Blender, and
make observations on Blender‘s structure and security. In section 4, we present a
multicollision attack based on these observations against Blender-n, word size w,
with effort less than 2

n+w
2 invocations of Blender, less than the claimed security

for all proposed variants of Blender. In section 5, we use a similar technique
to mount a preimage attack of complexity around n2

n+w
2 . Finally, we suggest

further improvements that may be possible, and leave open questions regarding
the round function.

Notation 1 Throughout this paper, unless noted otherwise, all addition is mod-
ulo 2w, and ¬ denotes the bitwise complement.

2 An Overview of Blender

For our purposes, all messages will be integer numbers of bytes, so some steps are
omitted. The input to the main function is a series of words of length w bits (w =

1



32 for Blender-224 and -256, w = 64 for Blender-384 and -512). This string is
prepared by taking the input message, then appending a message tail consisting
of fill bytes to get the completed message to the required length, the length of
the message in bits, the length of the length in bytes, and finally 2 checksums
(checksum 1 and checksum 2). The fill bytes consist of concatenating the first 13
bytes of the message with themselves repeatedly, until the result is longer than
the required length, then truncating the result to the required length. There
is a minimum length imposed on the input string, imposed by increasing the
number of fill bytes used if nessesscary. The checksums are computed from all
previous words (message, length, and fill) as follows. Let w1, w2, ..., wn be the
sequence of w bit words up to the checksums. Then:

checksum1 = ¬(
∑

wi)
checksum2 =

∑
(¬wi)

Remark 2 For our analysis, the message passed to Blender will consist of at
least 13 arbitrary, constant bytes (enough that the fill bytes consist only of these
bytes, and therefore remain constant as we change other parts of the message),
followed by whichever blocks we require.

After the tail is appended to the message to create the input string, a round
function is used to repeatly update an 8 word + 2 bit state (the initial state
is set equal to that of SHA-2). Each round uses one word of the input string
to update the state, then the new state words are added to an accumulator of
8 words, initially set to 0. After the entire string has been used, the output of
Blender is the contents of the accumulators.

Remark 3 For our analysis, we attack only the structure, using no specific
features of the round function. We therefore do not describe the round function
itself.

A more detailed specification is provided in the Blender specification [1].

3 Analysis

Our first observation concerns the checksums used in Blender - in particular
that, if checksum 1 is equal for two messages of the same length, then checksum
2 is also equal for both messages.

Theorem 4 Let x1, x2, ..., xn and y1, y2, ..., yn be two equal length sequences of
2w bit words. Then:
¬(

∑
xi) = ¬(

∑
yi) if and only if

∑
(¬xi) =

∑
(¬yi).

Proof. Note that ¬x = 2w − 1− x = −x− 1 (mod 2w). Now:
¬(

∑
xi) = ¬(

∑
yi)

⇔
∑

xi =
∑

yi

⇔
∑
−xi =

∑
−yi

⇔
∑

(−xi − 1) =
∑

(−yi − 1)
⇔

∑
(¬xi) =

∑
(¬yi)

We also observe that the size of the main state is little larger than the out-
put size (n + 2 bits), so collisions can be found in the main state with effort

2



about 2
n
2 +1 by the Birthday Paradox. The security of Blender against Joux

multicollisions [6] is therefore entirely reliant on the checksums and accumula-
tor. Furthermore, these are all additive, so if the main state can be controlled,
then it may not require massive effort to extend this control to these additive
accumulators / checksums. Similar additive accumulators were attacked in [5].

4 Multicollision Attack

Here we present our first contribution - a multicollision attack with effort about
2

n+w
2 for Blender-n. Taking an approach like in [5], we first get Joux multicol-

lisions [6] in the main state, and then change intermediate state values to reach
the same value in the accumulator. This can then be repeated to find Joux
multicollisions for the entire function.

The basic attack consists of the following steps (the starting state for these
steps is that after the arbitrary, constant words have been processed):

1) From the previous state, find some 2 equal length strings of words that
collide in the main state.

2) Repeat step 1 until there are over n+w
2 + 1 such pairs, using the output

state of the previous step 1 as the input to the next.
3) For each of these possible messages, compute checksum 1 and the accu-

mulator values.
4) Return some pair of these possible messages with equal checksum 1 and

the accumulator values.
In step 1, we expect that finding each such pair will take effort about 2

n
2 +1

by the Birthday Paradox, as noted above. We repeat this about n+w
2 + 1 times,

for total effort about (n + w)2
n
2 . In step 3, we expect an effort of about 2

n+w
2

calculations of checksum 1 and each accumulator value, which should dominate
the effort of steps 1 and 2. Again due to the Birthday Paradox, we expect
that some pair of these should be equal, and can be returned by step 4. Due
to Theorem 4, as both messages are the same length, then if accumulator 1 is
equal for both messages, then accumulator 2 is also, so after both messages, all
values (main state, checksums, accumulators, padding and length) are equal, so
this process can be repeated l times to create a 2l multicollision.

The total effort is little more than l2
n+w

2 calculations of checksum 1 and
each accumulator value, which is better than the claimed security against mul-
ticollisions of 2n invocations of Blender. Memory requirements are that of a
generic Birthday Attack on a state of n + w bits, and could be run essentially
memoryless using Floyd‘s cycle finding algorithm.

Remark 5 This is a very basic and naive implementation - many improvements
are possible, such as generating more pairs in step 2, then directly finding mul-
ticollisions in step 4. It may also be possible to find collisions in the main state
more effectively by exploiting the round function, or to exploit the linear-additive
nature of the checksums and accumulators to more efficiently find collisions in
the checksum and accumulator values.

Remark 6 Also note that as any such colliding pair collides in all state and
accumulators, ie adding identical strings to both members of such a colliding
pair gives a new colliding pair.

3



5 Preimage Attack

We now develop this idea, adapting the techniques of Gauravaram and Kelsey
[5] to more effectively control the value of the additive accumulators / checksum,
and give our main contribution: a first preimage attack against Blender. We will
first create Joux multicollisions in the main state, and then utilise Gauravaram
and Kelsey‘s Checksum Control Sequences (CCS) to control the checksums (en-
suring that after our message, all subsequent words - fill, length, length of length
and checksums - are equal in all cases) and accumulators to reach a desired hash
output (remember that the hash output is the final contents of the accumula-
tors). The attack consists of the following steps (the starting state for these
steps is that after the arbitrary, constant words have been processed):

1) From the previous state, find some 2 equal length strings of words that
collide in the main state.

2) Repeat step 1 until there are over n+w
2 + 1 such pairs, using the output

state of the previous step 1 as the input to the next.
3) We now expect to be able to find (within the 2

n+w
2 +1 possible message

segments) some pair of message segments with equal checksum values, equal
values in all but one of the accumulators, and any desired difference in the
remaining accumulator.

4) Repeat steps 1-3 n times (starting step 1 from the state of the previous
step 3), so that for each accumulator and each 2x less than 2w, we have some
pair of message segments that can be swapped to change the accumulator value
by 2x, without affecting the main state or checksum. Save each pair of message
segments.

5) Compute the hash of the message made up from the concatenation of one
member of each pair.

6) Determine the difference in each accumulator from the desired value.
Swap message segments as needed to set the accumulator to the desired value.
Return this string of message segments.

Step 1 should take effort about 2
n
2 +1, which is repeated n

2 + 1 times in step
2. In step 3, we essentially run a modified Birthday Attack collision search,
expecting effort about 2

n+w
2 calculations of checksum 1 and each accumulator

value. We then repeat all this n times, for a total complexity of about n2
n+w

2

calculations of checksum 1 and each accumulator value. Compared to this,
the complexity of computing one hash, and calculating the required differences
(steps 5 and 6) is negligible.

The memory requirements for the Birthday Attack can be removed for mini-
mal extra cost (using a slight varient of Floyd‘s cycle finding algorithm), and we
must save only 2n message segments of several words each in step 4. The total
complexity is therefore better than the claimed (and required) security of 2n

invocations of Blender for a First Preimage Attack, so we believe that Blender
is broken.

Remark 7 Although the discarding of the final main state was intended to make
certain attacks more difficult, it was the key feature that permits this preimage
attack. Similarly, we exploit the linear-additive nature of the accumulator to
control it.

4



6 Further Work

We have developed a basic structural multicollision attack, and also a preimage
attack, but there are areas highlighted for further work. The round function
itself has been completely ignored, yet is relatively simple. We leave it as an
open problem whether the round function can be exploited, to more accurately
and easily control to main state values. It may also be possible to improve on the
work of Gauravaram and Kelsey [5], as there are n

w w bit additive accumulators,
rather than one n bit accumulator. Unfortunately the attack complexity is still
impractical, so cannot be implemented, but we invite others to review (and
possibly improve on) our findings.

References

[1] Colin Bradbury: BLENDER: A Proposed New Family of
Cryptographic Hash Algorithms, Submission to NIST, 2008.
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

[2] Christophe De Cannire and Christian Rechberger: Finding SHA-1
Characteristics: General Results and Applications, Advances in Cryptology
ASIACRYPT 2006.

[3] Martin Cochran: Notes on the Wang et al. 263 SHA-1 Differential Path,
Cryptology ePrint Archive, 2007. http://eprint.iacr.org/2007/474

[4] NIST: Cryptographic Hash Project, http://www.csrc.nist.gov/groups/ST/hash/index.html

[5] Praveen Gauravaram and John Kelsey: Cryptanalysis of a class
of cryptographic hash functions, Cryptology ePrint Archive, 2007.
http://eprint.iacr.org/2007/277

[6] Antoine Joux: Multicollisions in Iterated Hash Functions. Application to
Cascaded Constructions, Crypto 2004, 2004.

5


